Power Piping

ASME Code for Pressure Piping, B31
The next edition of this Code is scheduled for publication in 2014. This Code will become effective 6 months after the Date of Issuance.

ASME issues written replies to inquiries concerning interpretations of technical aspects of this Code. Interpretations, Code Cases, and errata are published on the ASME Web site under the Committee Pages at http://cstools.asme.org/ as they are issued. Interpretations and Code Cases are also included with each edition.

Errata to codes and standards may be posted on the ASME Web site under the Committee Pages to provide corrections to incorrectly published items, or to correct typographical or grammatical errors in codes and standards. Such errata shall be used on the date posted.

The Committee Pages can be found at http://cstools.asme.org/. There is an option available to automatically receive an e-mail notification when errata are posted to a particular code or standard. This option can be found on the appropriate Committee Page after selecting “Errata” in the “Publication Information” section.
CONTENTS

Foreword ... vii
Committee Roster .. viii
Introduction .. xii
Summary of Changes ... xiv

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Scope and Definitions</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter I</td>
<td>Scope and Definitions</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>General</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter II</th>
<th>Design</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 1</td>
<td>Conditions and Criteria</td>
<td>12</td>
</tr>
<tr>
<td>101</td>
<td>Design Conditions</td>
<td>12</td>
</tr>
<tr>
<td>102</td>
<td>Design Criteria</td>
<td>13</td>
</tr>
<tr>
<td>Part 2</td>
<td>Pressure Design of Piping Components</td>
<td>19</td>
</tr>
<tr>
<td>103</td>
<td>Criteria for Pressure Design of Piping Components</td>
<td>19</td>
</tr>
<tr>
<td>104</td>
<td>Pressure Design of Components</td>
<td>19</td>
</tr>
<tr>
<td>Part 3</td>
<td>Selection and Limitations of Piping Components</td>
<td>34</td>
</tr>
<tr>
<td>105</td>
<td>Pipe</td>
<td>34</td>
</tr>
<tr>
<td>106</td>
<td>Fittings, Bends, and Intersections</td>
<td>34</td>
</tr>
<tr>
<td>107</td>
<td>Valves</td>
<td>35</td>
</tr>
<tr>
<td>108</td>
<td>Pipe Flanges, Blanks, Flange Facings, Gaskets, and Bolting</td>
<td>36</td>
</tr>
<tr>
<td>Part 4</td>
<td>Selection and Limitations of Piping Joints</td>
<td>37</td>
</tr>
<tr>
<td>110</td>
<td>Piping Joints</td>
<td>37</td>
</tr>
<tr>
<td>111</td>
<td>Welded Joints</td>
<td>37</td>
</tr>
<tr>
<td>112</td>
<td>Flanged Joints</td>
<td>38</td>
</tr>
<tr>
<td>113</td>
<td>Expanded or Rolled Joints</td>
<td>38</td>
</tr>
<tr>
<td>114</td>
<td>Threaded Joints</td>
<td>38</td>
</tr>
<tr>
<td>115</td>
<td>Flared, Flareless, and Compression Joints, and Unions</td>
<td>43</td>
</tr>
<tr>
<td>116</td>
<td>Bell End Joints</td>
<td>43</td>
</tr>
<tr>
<td>117</td>
<td>Brazed and Soldered Joints</td>
<td>43</td>
</tr>
<tr>
<td>118</td>
<td>Sleeve Coupled and Other Proprietary Joints</td>
<td>44</td>
</tr>
<tr>
<td>Part 5</td>
<td>Expansion, Flexibility, and Pipe Supporting Element</td>
<td>44</td>
</tr>
<tr>
<td>119</td>
<td>Expansion and Flexibility</td>
<td>44</td>
</tr>
<tr>
<td>120</td>
<td>Loads on Pipe Supporting Elements</td>
<td>46</td>
</tr>
<tr>
<td>121</td>
<td>Design of Pipe Supporting Elements</td>
<td>47</td>
</tr>
<tr>
<td>Part 6</td>
<td>Systems</td>
<td>51</td>
</tr>
<tr>
<td>122</td>
<td>Design Requirements Pertaining to Specific Piping Systems</td>
<td>51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter III</th>
<th>Materials</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>General Requirements</td>
<td>66</td>
</tr>
<tr>
<td>124</td>
<td>Limitations on Materials</td>
<td>66</td>
</tr>
<tr>
<td>125</td>
<td>Materials Applied to Miscellaneous Parts</td>
<td>67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter IV</th>
<th>Dimensional Requirements</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>126</td>
<td>Material Specifications and Standards for Standard and Nonstandard Piping Components</td>
<td>70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter V</th>
<th>Fabrication, Assembly, and Erection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>127</td>
<td>Welding</td>
<td>78</td>
</tr>
<tr>
<td>128</td>
<td>Brazing and Soldering</td>
<td>89</td>
</tr>
<tr>
<td>129</td>
<td>Bending and Forming</td>
<td>90</td>
</tr>
<tr>
<td>130</td>
<td>Requirements for Fabricating and Attaching Pipe Supports</td>
<td>93</td>
</tr>
<tr>
<td>131</td>
<td>Welding Preheat</td>
<td>93</td>
</tr>
</tbody>
</table>
V Recommended Practice for Operation, Maintenance, and Modification of Power Piping Systems ... 290
VI Approval of New Materials ... 303
VII Procedures for the Design of Restrained Underground Piping 304
Index .. 315
FOREWORD

The general philosophy underlying this Power Piping Code is to parallel those provisions of Section I, Power Boilers, of the ASME Boiler and Pressure Vessel Code, as they can be applied to power piping systems. The Allowable Stress Values for power piping are generally consistent with those assigned for power boilers. This Code is more conservative than some other piping codes, reflecting the need for long service life and maximum reliability in power plant installations.

The Power Piping Code as currently written does not differentiate among the design, fabrication, and erection requirements for critical and noncritical piping systems, except for certain stress calculations and mandatory nondestructive tests of welds for heavy wall, high temperature applications. The problem involved is to try to reach agreement on how to evaluate criticality, and to avoid the inference that noncritical systems do not require competence in design, fabrication, and erection. Someday such levels of quality may be definable, so that the need for the many different piping codes will be overcome.

There are many instances where the Code serves to warn a designer, fabricator, or erector against possible pitfalls; but the Code is not a handbook, and cannot substitute for education, experience, and sound engineering judgment.

Nonmandatory Appendices are included in the Code. Each contains information on a specific subject, and is maintained current with the Code. Although written in mandatory language, these Appendices are offered for application at the user’s discretion.

The Code never intentionally puts a ceiling limit on conservatism. A designer is free to specify more rigid requirements as he feels they may be justified. Conversely, a designer who is capable of a more rigorous analysis than is specified in the Code may justify a less conservative design, and still satisfy the basic intent of the Code.

The Power Piping Committee strives to keep abreast of the current technological improvements in new materials, fabrication practices, and testing techniques; and endeavors to keep the Code updated to permit the use of acceptable new developments.
ASME B31 COMMITTEE
Code for Pressure Piping
(The following is the roster of the Committee at the time of approval of this Code.)

STANDARDS COMMITTEE OFFICERS

M. L. Nayyar, Chair
J. E. Meyer, Vice Chair
N. Lobo, Secretary

STANDARDS COMMITTEE PERSONNEL

R. J. T. Appleby, ExxonMobil Development Co.
C. Becht IV, Becht Engineering Co.
A. E. Beyer, Fluor Enterprises
K. C. Bodenhamer, Enterprise Products Co.
C. J. Campbell, Air Liquide
J. S. Chin, TransCanada Pipeline U.S.
D. D. Christian, Victaulic
D. L. Coym, Intertek Moody
C. J. Melo, Alternate, S & B Engineers and Constructors, Ltd.
R. P. Deubler, Fronek Power Systems, LLC
P. D. Fleener, Fleener Engineering Services
J. W. Frey, Stress Engineering Services, Inc.
D. R. Frikkcn, Bucht Engineering Co.
R. A. Grichuk, Fluor Enterprises, Inc.
R. W. Haupt, Pressure Piping Engineering Associates, Inc.
B. P. Holbrook, Babcock Power, Inc.
G. A. Jolly, Vogt Valves/Flowserve Corp.
N. Lobo, The American Society of Mechanical Engineers
W. J. Mauro, American Electric Power
M. L. Nayyar
R. G. Payne, Alstom Power, Inc.
G. R. Petru, Engineering Products Co., Inc.
E. H. Rinaca, Dominion Resources, Inc.
M. J. Rosenfeld, Kiefner & Associates, Inc.
R. J. Silvia, Process Engineers and Constructors, Inc.
W. J. Sperko, Sperko Engineering Services, Inc.
F. W. Tatar, FM Global
K. A. Vilminot, Black & Veatch
A. Soni, Delegate, Engineers India Ltd.
L. E. Hayden, Jr., Ex-Officio, Consultant
W. J. Koves, Ex-Officio, PI Engineering Software, Inc.
A. P. Rangus, Ex-Officio, Bechtel
J. T. Schmitz, Ex-Officio, Southwest Gas Corp.
R. A. Appleton, Contributing Member, Refrigeration Systems Co.

B31.1 POWER PIPING SECTION COMMITTEE

J. W. Frey, Chair, Stress Engineering Services, Inc.
W. J. Mauro, Vice Chair, American Electric Power
C. E. O’Brien, Secretary, The American Society of Mechanical Engineers
D. D. Christian, Victaulic
M. J. Cohn, Intertek-Aptech
S. D. Cross, Zachry Engineering
G. J. Delude, Penpower
R. P. Deubler, Fronek Power Systems, LLC
A. S. Drake, Constellation Energy Group
S. J. Findlan, Shaw Power Group
P. D. Fleener, Fleener Engineering Services
E. C. Goodling, Jr., WorleyParsons
J. W. Goodwin, Southern Co.
T. E. Hansen, American Electric Power
R. W. Haupt, Pressure Piping Engineering Associates, Inc.
C. L. Henley, Black & Veatch
B. P. Holbrook, Babcock Power, Inc.
M. W. Johnson, GenOn Energy, Inc.
R. J. Kennedy, Detroit Edison Co.
D. J. Leininger, WorleyParsons
S. P. Licud, Consultant
W. M. Lundy, U.S. Coast Guard
M. L. Nayyar
R. G. Payne, Alstom Power, Inc.
D. W. Rahoi, CCM 2000
K. I. Rapkin, FPL
R. K. Reamey, Turner Industries Group, LLC
E. H. Rinaca, Dominion Resources, Inc.
R. D. Schueler, Jr., The National Board of Boiler and Pressure Vessel Inspectors
J. P. Scott, Dominion
J. J. Sekely, Welding Services, Inc.
H. R. Simpson, Stantec
S. K. Sinha, Lucas Pitkin, Inc.
K. A. Vilminot, Black & Veatch
A. L. Watkins, First Energy Corp.
H. A. Ainsworth, Contributing Member, Consultant
B31.1 SUBGROUP ON DESIGN

K. A. Vilminot, Chair, Black & Veatch
A. L. Watkins, Secretary, First Energy Corp.
S. D. Cross, Zachry Engineering
M. K. Engelkemier, Stanley Consultants, Inc.
J. W. Goodwin, Southern Co.
R. W. Haupt, Pressure Piping Engineering Associates, Inc.
B. P. Holbrook, Babcock Power, Inc.
M. W. Johnson, GenOn Energy, Inc.

B. P. Holbrook, Babcock Power, Inc.
R. J. Kennedy, Detroit Edison Co.
W. M. Lundy, U.S. Coast Guard
R. G. Payne, Alstom Power, Inc.
D. D. Pierce, Puget Sound Naval Shipyard
K. I. Rapkin, FPL
P. E. Sandage, Segu, Inc.
T. Sato, Japan Power Engineering and Inspection Corp.
D. B. Selman, Ambitech Engineering Corp.
R. B. Wilson, TWD Technologies Ltd.
A. D. Nance, Contributing Member, Consultant

B31.1 SUBGROUP ON FABRICATION AND EXAMINATION

R. K. Reamey, Chair, Turner Industries Group, LLC
R. B. Corbit, Exelon Nuclear
R. D. Couch, Electric Power Research Institute
P. M. Davis, Foster Wheeler North America Corp.
C. Emslander
S. J. Findlan, Shaw Power Group
P. D. Flenner, Flenner Engineering Services
J. W. Frey, Stress Engineering Services, Inc.
S. E. Gingrich, URS Corp.

J. Hainsworth, WR Metallurgical
T. E. Hansen, American Electric Power
K. G. Kofford, Idaho National Laboratory
S. L. Leach, Babcock & Wilcox Construction Co., Inc.
D. J. Leininger, WorleyParsons
S. P. Licud, Consultant
T. Monday, Team Industries, Inc.
J. J. Sekely, Welding Services, Inc.
E. F. Gerwin, Honorary Member

B31.1 SUBGROUP ON GENERAL REQUIREMENTS

W. J. Mauro, Chair, American Electric Power
H. A. Ainsworth, Consultant
R. D. Austin, Arizona Division of Safety and Health
D. D. Christian, Victaulic
G. J. Delude, Penpower

J. W. Power, Alstom Power, Inc.
R. D. Schueler, Jr., The National Board of Boiler and Pressure Vessel Inspectors
M. A. Treat, Associated Electric Cooperative, Inc.

B31.1 SUBGROUP ON MATERIALS

D. W. Rahoi, Chair, CCM 2000
M. G. Barkan, Lisega, Inc.
R. P. Deubler, Fronek Power Systems, LLC
A. S. Drake, Constellation Energy Group
C. L. Henley, Black & Veatch

S. L. McCracken, Electric Power Research Institute
L. C. McDonald, Structural Integrity Associates, Inc.
M. L. Nayar
W. M. Sherman, Swagelok Co.
N. S. Tambat, Bechtel

B31.1 SUBGROUP ON OPERATION AND MAINTENANCE

R. J. Kennedy, Chair, Detroit Edison Co.
M. K. Engelkemier, Secretary, Stanley Consultants, Inc.
M. J. Cohn, Intertek–Aptech
S. D. Cross, Zachry Engineering
P. M. Davis, Foster Wheeler North America Corp.
P. D. Flenner, Flenner Engineering Services
J. W. Frey, Stress Engineering Services, Inc.
E. C. Goodling, Jr., WorleyParsons
J. W. Goodwin, Southern Co.
T. E. Hansen, American Electric Power

R. W. Haupt, Pressure Piping Engineering Associates, Inc.
B. P. Holbrook, Babcock Power, Inc.
M. W. Johnson, GenOn Energy, Inc.
W. J. Mauro, American Electric Power
L. C. McDonald, Structural Integrity Associates, Inc.
M. L. Nayar
R. G. Payne, Alstom Power, Inc.
K. I. Rapkin, FPL
R. K. Reamey, Turner Industries Group, LLC
E. H. Rinaca, Dominion Resources, Inc.
J. P. Scott, Dominion
A. L. Watkins, First Energy Corp.

B31.1 SUBGROUP ON SPECIAL ASSIGNMENTS

S. K. Sinha, Chair, Lucius Pitkin, Inc.
J. P. Scott, Secretary, Dominion
M. J. Cohn, Intertek–Aptech
E. C. Goodling, Jr., WorleyParsons

E. H. Rinaca, Dominion Resources, Inc.
H. R. Simpson, Stantec
L. G. Vetter, Sargent & Lundy Engineers
D. A. Yoder, WorleyParsons
B31 EXECUTIVE COMMITTEE

J. E. Meyer, Chair, Louis Perry & Associates, Inc.
N. Lobo, Secretary, The American Society of Mechanical Engineers
R. J. T. Appleby, ExxonMobil Development Co.
D. D. Christian, Victaulic
J. W. Frey, Stress Engineering Services, Inc.
D. R. Frikken, Bechtel Engineering Co.
R. A. Grichuk, Fluor Enterprises, Inc.
L. E. Hayden, Jr., Consultant

G. A. Jolly, Vogt Valves/Flowserve Corp.
W. J. Koves, PI Engineering Software, Inc.
M. L. Nayyar
G. R. Petru, Engineering Products Co., Inc.
A. P. Rangus, Bechtel
J. T. Schmitz, Southwest Gas Co.
R. A. Appleton, Contributing Member, Refrigeration Systems Co.

B31 CONFERENCE GROUP

A. Bell, Bonneville Power Administration
R. A. Coomes, Commonwealth of Kentucky, Department of Housing/Boiler Section
D. H. Hanrath
C. J. Harvey, Alabama Public Service Commission
D. T. Jagger, Ohio Department of Commerce
M. Kotb, Regie du Batiment du Quebec
K. T. Lau, Alberta Boilers Safety Association
R. G. Marini, New Hampshire Public Utilities Commission
I. W. Mault, Manitoba Department of Labour
A. W. Meiring, Fire and Building Safety Division/Indiana

R. F. Mullaney, Boiler and Pressure Vessel Safety Branch/Vancouver
P. Sher, State of Connecticut
M. E. Skarda, Arkansas Department of Labor
D. A. Starr, Nebraska Department of Labor
D. J. Stursma, Iowa Utilities Board
R. P. Sullivan, The National Board of Boiler and Pressure Vessel Inspectors
J. E. Troppman, Division of Labor/State of Colorado Boiler Inspections
W. A. M. West, Lighthouse Assistance, Inc.
T. F. Wickham, Rhode Island Department of Labor

B31 FABRICATION AND EXAMINATION COMMITTEE

A. P. Rangus, Chair, Bechtel
N. Lobo, Secretary, The American Society of Mechanical Engineers
J. P. Ellenberger
R. J. Ferguson, Metallurgist
D. J. Fetzner, BP Exploration Alaska, Inc.
P. D. Flenner, Flenner Engineering Services
J. W. Frey, Stress Engineering Services, Inc.
W. W. Lewis, E. I. duPont

S. P. Licud, Consultant
T. Monday, Team Industries, Inc.
A. D. Nalbandian, Thielisch Engineering, Inc.
R. I. Seals, Consultant
R. J. Silvia, Process Engineers & Constructors, Inc.
W. J. Sperko, Sperko Engineering Services, Inc.
E. F. Summers, Jr., Babcock & Wilcox Construction Co.
J. P. Swezy, Jr., UT-Battelle
P. L. Vaughan, ONEOK Partners

B31 MATERIALS TECHNICAL COMMITTEE

R. A. Grichuk, Chair, Fluor Enterprises, Inc.
N. Lobo, Secretary, The American Society of Mechanical Engineers
R. P. Deubler, Fronck Power Systems, LLC
W. H. Eskridge, Jr., Jacobs Engineering
G. A. Jolly, Vogt Valves/Flowserve Corp.
C. J. Melo, S & B Engineers and Constructors, Ltd.
M. L. Nayyar
M. B. Pickell, Willbros Engineers, Inc.
D. W. Rahoi, CCM 2000
R. A. Schmidt, Canadoil
H. R. Simpson, Stantec
J. L. Smith, Jacobs Engineering Group
Z. Djilali, Contributing Member, BEREP

B31.1 INTERNATIONAL WORKING GROUP — INDIA

A. Kumar, Chair, Bechtel India Pvt. Ltd.
G. Ravichandran, Vice Chair, Bharat Heavy Electricals Ltd.
P. P. Buddhadeo, Bechtel India Pvt. Ltd.
D. D. Christian, Victaulic
R. Goel, Bechtel India Pvt. Ltd.
R. Muruganantham, Larsen & Toubro Ltd.

V. Pahujani, Bechtel India Pvt. Ltd.
P. Sanyal, Bechtel India Pvt. Ltd.
R. P. Singh, CB&I Lummus Private Ltd.
K. Srinivasan, Bharat Heavy Electricals Ltd.
R. Tiwari, CoDesign Engineering Pvt. Ltd.
B31 MECHANICAL DESIGN TECHNICAL COMMITTEE

W. J. Koves, Chair, Pl Engineering Software, Inc.
G. A. Antaki, Vice Chair, Becht Engineering Co., Inc.
C. E. O’Brien, Secretary, The American Society of Mechanical Engineers
D. Arnett, Fluor Enterprises, Inc.
C. Becht IV, Becht Engineering Co.
R. Bethea, Newport News Shipbuilding
J. P. Breen, Becht Engineering Co.
P. Cakir-Kavcar, Bechtel Corp.
N. F. Consumo, Sr.
J. P. Ellenberger
D. J. Fetzner, BP Exploration Alaska, Inc.
J. A. Graziano, Consultant
R. W. Haupt, Pressure Piping Engineering Associates, Inc.
B. P. Holbrook, Babcock Power, Inc.
R. A. Leishear, Savannah River National Laboratory
G. D. Mayers, Alion Science & Technology
J. F. McCabe, General Dynamics Electric Boat
T. Q. McCawley, TQM Engineering
R. J. Medvick, Consultant
J. C. Minichileo, Bechtel National, Inc.
A. W. Paulin, Paulin Research Group
R. A. Robledo, KBR
M. J. Rosenfeld, Kiefner & Associates, Inc.
T. Sato, Japan Power Engineering and Inspection Corp.
G. Stevick, Berkeley Engineering and Research, Inc.
H. Kosasayama, Delegate, JGC Corp.
E. C. Rodabaugh, Honorary Member, Consultant
INTRODUCTION

The ASME B31 Code for Pressure Piping consists of a number of individually published Sections, each an American National Standard, under the direction of ASME Committee B31, Code for Pressure Piping.

Rules for each Section have been developed considering the need for application of specific requirements for various types of pressure piping. Applications considered for each Code Section include:

B31.1 Power Piping: piping typically found in electric power generating stations, in industrial and institutional plants, geothermal heating systems, and central and district heating and cooling systems

B31.3 Process Piping: piping typically found in petroleum refineries; chemical, pharmaceutical, textile, paper, semiconductor, and cryogenic plants; and related processing plants and terminals

B31.4 Pipeline Transportation Systems for Liquid Hydrocarbons and Other Liquids: piping transporting products that are predominately liquid between plants and terminals and within terminals, pumping, regulating, and metering stations

B31.5 Refrigeration Piping: piping for refrigerants and secondary coolants

B31.8 Gas Transportation and Distribution Piping Systems: piping transporting products that are predominately gas between sources and terminals, including compressor, regulating, and metering stations; and gas gathering pipelines

B31.9 Building Services Piping: piping typically found in industrial, institutional, commercial, and public buildings, and in multi-unit residences, which does not require the range of sizes, pressures, and temperatures covered in B31.1

B31.11 Slurry Transportation Piping Systems: piping transporting aqueous slurries between plants and terminals and within terminals, pumping, and regulating stations

B31.12 Hydrogen Piping and Pipelines: piping in gaseous and liquid hydrogen service, and pipelines in gaseous hydrogen service

This is the B31.1 Power Piping Code Section. Hereafter, in this Introduction and in the text of this Code Section B31.1, where the word Code is used without specific identification, it means this Code Section.

It is the owner's responsibility to select the Code Section that most nearly applies to a proposed piping installation. Factors to be considered by the owner include limitations of the Code Section, jurisdictional requirements, and the applicability of other codes and standards. All applicable requirements of the selected Code Section shall be met. For some installations, more than one Code Section may apply to different parts of the installation. The owner is also responsible for imposing requirements supplementary to those of the selected Code Section, if necessary, to assure safe piping for the proposed installation.

Certain piping within a facility may be subject to other codes and standards, including but not limited to:

- ASME Boiler and Pressure Vessel Code, Section III: nuclear power piping
- ANSI Z223.1 National Fuel Gas Code: piping for fuel gas from the point of delivery to the connection of each fuel utilization device
- NFPA Fire Protection Standards: fire protection systems using water, carbon dioxide, halon, foam, dry chemical, and wet chemicals
- NFPA 99 Health Care Facilities: medical and laboratory gas systems
- NFPA 8503 Standard for Pulverized Fuel Systems: piping for pulverized coal from the coal mills to the burners
- building and plumbing codes, as applicable, for potable hot and cold water, and for sewer and drain systems

The Code sets forth engineering requirements deemed necessary for safe design and construction of pressure piping. While safety is the basic consideration, this factor alone will not necessarily govern the final specifications for any piping system. The designer is cautioned that the Code is not a design handbook; it does not eliminate the need for the designer or for competent engineering judgment.

To the greatest possible extent, Code requirements for design are stated in terms of basic design principles and formulas. These are supplemented as necessary with specific requirements to ensure uniform application of principles and to guide selection and application of piping elements. The Code prohibits designs and practices known to be unsafe and contains warnings where caution, but not prohibition, is warranted.

The specific design requirements of the Code usually revolve around a simplified engineering approach to a subject. It is intended that a designer capable of applying more complete and rigorous analysis to special or
unusual problems shall have latitude in the development of such designs and the evaluation of complex or combined stresses. In such cases the designer is responsible for demonstrating the validity of his approach.

This Code Section includes the following:

(a) references to acceptable material specifications and component standards, including dimensional requirements and pressure–temperature ratings

(b) requirements for design of components and assemblies, including pipe supports

(c) requirements and data for evaluation and limitation of stresses, reactions, and movements associated with pressure, temperature changes, and other forces

(d) guidance and limitations on the selection and application of materials, components, and joining methods

(e) requirements for the fabrication, assembly, and erection of piping

(f) requirements for examination, inspection, and testing of piping

(g) requirements for operation and maintenance of piping systems

It is intended that this edition of Code Section B31.1 not be retroactive. Unless agreement is specifically made between contracting parties to use another issue, or the regulatory body having jurisdiction imposes the use of another issue, the latest edition issued at least 6 months prior to the original contract date for the first phase of activity covering a piping system or systems shall be the governing document for all design, materials, fabrication, erection, examination, and testing for the piping until the completion of the work and initial operation.

Users of this Code are cautioned against making use of revisions without assurance that they are acceptable to the proper authorities in the jurisdiction where the piping is to be installed.

Code users will note that clauses in the Code are not necessarily numbered consecutively. Such discontinuities result from following a common outline, insofar as practicable, for all Code Sections. In this way, corresponding material is correspondingly numbered in most Code Sections, thus facilitating reference by those who have occasion to use more than one Section.

The Code is under the direction of ASME Committee B31, Code for Pressure Piping, which is organized and operates under procedures of The American Society of Mechanical Engineers which have been accredited by the American National Standards Institute. The Committee is a continuing one, and keeps all Code Sections current with new developments in materials, construction, and industrial practice. New editions are published at intervals of two to five years.

When no Section of the ASME Code for Pressure Piping, specifically covers a piping system, at the user’s discretion, he/she may select any Section determined to be generally applicable. However, it is cautioned that supplementary requirements to the Section chosen may be necessary to provide for a safe piping system for the intended application. Technical limitations of the various Sections, legal requirements, and possible applicability of other codes or standards are some of the factors to be considered by the user in determining the applicability of any Section of this Code.

The Committee has established an orderly procedure to consider requests for interpretation and revision of Code requirements. To receive consideration, inquiries must be in writing and must give full particulars (see Mandatory Appendix H covering preparation of technical inquiries). The Committee will not respond to inquiries requesting assignment of a Code Section to a piping installation.

The approved reply to an inquiry will be sent directly to the inquirer. In addition, the question and reply will be published as part of an Interpretation Supplement issued to the applicable Code Section.

A Case is the prescribed form of reply to an inquiry when study indicates that the Code wording needs clarification or when the reply modifies existing requirements of the Code or grants permission to use new materials or alternative constructions. The Case will be published as part of a Case Supplement issued to the applicable Code Section.

The ASME B31 Standards Committee took action to eliminate Code Case expiration dates effective September 21, 2007. This means that all Code Cases in effect as of this date will remain available for use until annulled by the ASME B31 Standards Committee.

Materials are listed in the Stress Tables only when sufficient usage in piping within the scope of the Code has been shown. Materials may be covered by a Case. Requests for listing shall include evidence of satisfactory usage and specific data to permit establishment of allowable stresses, maximum and minimum temperature limits, and other restrictions. Additional criteria can be found in the guidelines for addition of new materials in the ASME Boiler and Pressure Vessel Code, Section II and Section VIII, Division I, Appendix B. (To develop usage and gain experience, unlisted materials may be used in accordance with para. 123.1.)

Requests for interpretation and suggestions for revision should be addressed to the Secretary, ASME B31 Committee, Three Park Avenue, New York, NY 10016-5990.
POWER PIPING

Chapter I
Scope and Definitions

100 GENERAL

This Power Piping Code is one of several Sections of the American Society of Mechanical Engineers Code for Pressure Piping, B31. This Section is published as a separate document for convenience.

Standards and specifications specifically incorporated by reference into this Code are shown in Table 126.1. It is not considered practical to refer to a dated edition of each of the standards and specifications in this Code. Instead, the dated edition references are included in an Addenda and will be revised yearly.

100.1 Scope

Rules for this Code Section have been developed considering the needs for applications that include piping typically found in electric power generating stations, in industrial and institutional plants, geothermal heating systems, and central and district heating and cooling systems.

100.1.2 Power piping systems as covered by this Code apply to all piping and their component parts except as excluded in para. 100.1.3. They include but are not limited to steam, water, oil, gas, and air services.

(A) This Code covers boiler external piping as defined below for power boilers and high temperature, high pressure water boilers in which steam or vapor is generated at a pressure of more than 15 psig [100 kPa (gage)]; and high temperature water is generated at pressures exceeding 160 psig [1 103 kPa (gage)] and/or temperatures exceeding 250°F (120°C).

Boiler external piping shall be considered as piping that begins where the boiler proper terminates at

(1) the first circumferential joint for welding end connections; or
(2) the face of the first flange in bolted flanged connections; or
(3) the first threaded joint in that type of connection; and that extends up to and including the valve or valves required by para. 122.1.

The terminal points themselves are considered part of the boiler external piping. The terminal points and piping external to power boilers are illustrated by Figs. 100.1.2(A.1), 100.1.2(A.2), 100.1.2(B), and 100.1.2(C).

Piping between the terminal points and the valve or valves required by para. 122.1 shall be provided with Data Reports, inspection, and stamping as required by Section I of the ASME Boiler and Pressure Vessel Code. All welding and brazing of this piping shall be performed by manufacturers or contractors authorized to use the appropriate symbol shown in Figs. PG-105.1 through PG-105.3 of Section I of the ASME Boiler and Pressure Vessel Code. The installation of boiler external piping by mechanical means may be performed by an organization not holding a Code symbol stamp. However, the holder of a valid S, A, or PP Certificate of Authorization shall be responsible for the documentation and hydrostatic test, regardless of the method of assembly. The quality control system requirements of Section I of the ASME Boiler and Pressure Vessel Code shall apply. These requirements are shown in Mandatory Appendix J of this Code.
Date of Issuance: January 10, 2013

The next edition of this Code is scheduled for publication in 2014. This Code will become effective 6 months after the Date of Issuance.

ASME issues written replies to inquiries concerning interpretations of technical aspects of this Code. Interpretations, Code Cases, and errata are published on the ASME Web site under the Committee Pages at http://cstools.asme.org/ as they are issued. Interpretations and Code Cases are also included with each edition.

Errata to codes and standards may be posted on the ASME Web site under the Committee Pages to provide corrections to incorrectly published items, or to correct typographical or grammatical errors in codes and standards. Such errata shall be used on the date posted.

The Committee Pages can be found at http://cstools.asme.org/. There is an option available to automatically receive an e-mail notification when errata are posted to a particular code or standard. This option can be found on the appropriate Committee Page after selecting “Errata” in the “Publication Information” section.

ASME is the registered trademark of The American Society of Mechanical Engineers.

This code or standard was developed under procedures accredited as meeting the criteria for American National Standards. The Standards Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed code or standard was made available for public review and comment that provides an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large.

ASME does not “approve,” “rate,” or “endorse” any item, construction, proprietary device, or activity. ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent, nor assume any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard.

ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures and policies, which precludes the issuance of interpretations by individuals.

No part of this document may be reproduced in any form,
in an electronic retrieval system or otherwise,
without the prior written permission of the publisher.

The American Society of Mechanical Engineers
Three Park Avenue, New York, NY 10016-5990

Copyright © 2013 by
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
All rights reserved
Printed in U.S.A.
CONTENTS

Foreword ... xiii
Committee Personnel .. xiv
Introduction .. xviii
Summary of Changes ... xx

Chapter I Scope and Definitions

- 300 General Statements ... 1

Chapter II Design

- Part 1 Conditions and Criteria .. 10
 - 301 Design Conditions .. 10
 - 302 Design Criteria ... 12
- Part 2 Pressure Design of Piping Components 18
 - 303 General ... 18
 - 304 Pressure Design of Components 20

Chapter III Materials

- 323 General Requirements ... 46
 - 325 Materials — Miscellaneous 55

Chapter IV Standards for Piping Components

- 326 Dimensions and Ratings of Components 56

Chapter V Fabrication, Assembly, and Erection

- 327 General ... 59
 - 328 Welding and Brazing ... 59
 - 330 Preheating ... 65
 - 331 Heat Treatment .. 67
 - 332 Bending and Forming ... 70
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A343</td>
<td>Examination Procedures</td>
<td>104</td>
</tr>
<tr>
<td>A344</td>
<td>Types of Examination</td>
<td>105</td>
</tr>
<tr>
<td>A345</td>
<td>Testing</td>
<td>105</td>
</tr>
<tr>
<td>A346</td>
<td>Records</td>
<td>106</td>
</tr>
<tr>
<td>Chapter VIII</td>
<td>Piping for Category M Fluid Service</td>
<td></td>
</tr>
<tr>
<td>M300</td>
<td>General Statements</td>
<td>107</td>
</tr>
<tr>
<td>Part 1</td>
<td>Conditions and Criteria</td>
<td>107</td>
</tr>
<tr>
<td>M301</td>
<td>Design Conditions</td>
<td>107</td>
</tr>
<tr>
<td>M302</td>
<td>Design Criteria</td>
<td>107</td>
</tr>
<tr>
<td>Part 2</td>
<td>Pressure Design of Metallic Piping Components</td>
<td>108</td>
</tr>
<tr>
<td>M303</td>
<td>General</td>
<td>108</td>
</tr>
<tr>
<td>M304</td>
<td>Pressure Design of Metallic Components</td>
<td>108</td>
</tr>
<tr>
<td>Part 3</td>
<td>Fluid Service Requirements for Metallic Piping Components</td>
<td>108</td>
</tr>
<tr>
<td>M305</td>
<td>Pipe</td>
<td>108</td>
</tr>
<tr>
<td>M306</td>
<td>Metallic Fittings, Bends, Miters, Laps, and Branch Connections</td>
<td>108</td>
</tr>
<tr>
<td>M307</td>
<td>Metallic Valves and Specialty Components</td>
<td>108</td>
</tr>
<tr>
<td>M308</td>
<td>Flanges, Blanks, Flange Facings, and Gaskets</td>
<td>109</td>
</tr>
<tr>
<td>M309</td>
<td>Bolting</td>
<td>109</td>
</tr>
<tr>
<td>Part 4</td>
<td>Fluid Service Requirements for Metallic Piping Joints</td>
<td>109</td>
</tr>
<tr>
<td>M310</td>
<td>Metallic Piping, General</td>
<td>109</td>
</tr>
<tr>
<td>M311</td>
<td>Welded Joints in Metallic Piping</td>
<td>109</td>
</tr>
<tr>
<td>M312</td>
<td>Flanged Joints in Metallic Piping</td>
<td>109</td>
</tr>
<tr>
<td>M313</td>
<td>Expanded Joints in Metallic Piping</td>
<td>109</td>
</tr>
<tr>
<td>M314</td>
<td>Threaded Joints in Metallic Piping</td>
<td>109</td>
</tr>
<tr>
<td>M315</td>
<td>Tubing Joints in Metallic Piping</td>
<td>109</td>
</tr>
<tr>
<td>M316</td>
<td>Caulked Joints</td>
<td>109</td>
</tr>
<tr>
<td>M317</td>
<td>Soldered and Brazed Joints</td>
<td>109</td>
</tr>
<tr>
<td>M318</td>
<td>Special Joints in Metallic Piping</td>
<td>109</td>
</tr>
<tr>
<td>Part 5</td>
<td>Flexibility and Support of Metallic Piping</td>
<td>110</td>
</tr>
<tr>
<td>M319</td>
<td>Flexibility of Metallic Piping</td>
<td>110</td>
</tr>
<tr>
<td>M321</td>
<td>Piping Support</td>
<td>110</td>
</tr>
<tr>
<td>Part 6</td>
<td>Systems</td>
<td>110</td>
</tr>
<tr>
<td>M322</td>
<td>Specific Piping Systems</td>
<td>110</td>
</tr>
<tr>
<td>Part 7</td>
<td>Metallic Materials</td>
<td>110</td>
</tr>
<tr>
<td>M323</td>
<td>General Requirements</td>
<td>110</td>
</tr>
<tr>
<td>M325</td>
<td>Materials — Miscellaneous</td>
<td>110</td>
</tr>
<tr>
<td>Part 8</td>
<td>Standards for Piping Components</td>
<td>110</td>
</tr>
<tr>
<td>M326</td>
<td>Dimensions and Ratings of Components</td>
<td>110</td>
</tr>
<tr>
<td>Part 9</td>
<td>Fabrication, Assembly, and Erection of Metallic Piping</td>
<td>111</td>
</tr>
<tr>
<td>M327</td>
<td>General</td>
<td>111</td>
</tr>
<tr>
<td>M328</td>
<td>Welding of Metals</td>
<td>111</td>
</tr>
<tr>
<td>M330</td>
<td>Preheating of Metals</td>
<td>111</td>
</tr>
<tr>
<td>M331</td>
<td>Heat Treatment of Metals</td>
<td>111</td>
</tr>
<tr>
<td>M332</td>
<td>Bending and Forming of Metals</td>
<td>111</td>
</tr>
<tr>
<td>M335</td>
<td>Assembly and Erection of Metallic Piping</td>
<td>111</td>
</tr>
<tr>
<td>Part 10</td>
<td>Inspection, Examination, Testing, and Records of Metallic Piping</td>
<td>111</td>
</tr>
<tr>
<td>M340</td>
<td>Inspection</td>
<td>111</td>
</tr>
<tr>
<td>M341</td>
<td>Examination</td>
<td>111</td>
</tr>
<tr>
<td>M342</td>
<td>Examination Personnel</td>
<td>112</td>
</tr>
<tr>
<td>M343</td>
<td>Examination Procedures</td>
<td>112</td>
</tr>
<tr>
<td>M344</td>
<td>Types of Examination</td>
<td>112</td>
</tr>
<tr>
<td>M345</td>
<td>Testing</td>
<td>112</td>
</tr>
<tr>
<td>M346</td>
<td>Records</td>
<td>112</td>
</tr>
<tr>
<td>Part 2</td>
<td>Pressure Design of Piping Components</td>
<td>118</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>-----</td>
</tr>
<tr>
<td>K303</td>
<td>General</td>
<td></td>
</tr>
<tr>
<td>K304</td>
<td>Pressure Design of High Pressure Components</td>
<td>118</td>
</tr>
<tr>
<td>Part 3</td>
<td>Fluid Service Requirements for Piping Components</td>
<td>122</td>
</tr>
<tr>
<td>K305</td>
<td>Pipe</td>
<td></td>
</tr>
<tr>
<td>K306</td>
<td>Fittings, Bends, and Branch Connections</td>
<td></td>
</tr>
<tr>
<td>K307</td>
<td>Valves and Specialty Components</td>
<td></td>
</tr>
<tr>
<td>K308</td>
<td>Flanges, Blanks, Flange Facings, and Gaskets</td>
<td></td>
</tr>
<tr>
<td>K309</td>
<td>Bolting</td>
<td></td>
</tr>
<tr>
<td>Part 4</td>
<td>Fluid Service Requirements for Piping Joints</td>
<td>123</td>
</tr>
<tr>
<td>K310</td>
<td>General</td>
<td></td>
</tr>
<tr>
<td>K311</td>
<td>Welded Joints</td>
<td></td>
</tr>
<tr>
<td>K312</td>
<td>Flanged Joints</td>
<td></td>
</tr>
<tr>
<td>K313</td>
<td>Expanded Joints</td>
<td></td>
</tr>
<tr>
<td>K314</td>
<td>Threaded Joints</td>
<td></td>
</tr>
<tr>
<td>K315</td>
<td>Tubing Joints</td>
<td></td>
</tr>
<tr>
<td>K316</td>
<td>Caulked Joints</td>
<td></td>
</tr>
<tr>
<td>K317</td>
<td>Soldered and Brazeed Joints</td>
<td></td>
</tr>
<tr>
<td>K318</td>
<td>Special Joints</td>
<td></td>
</tr>
<tr>
<td>Part 5</td>
<td>Flexibility and Support</td>
<td>124</td>
</tr>
<tr>
<td>K319</td>
<td>Flexibility</td>
<td></td>
</tr>
<tr>
<td>K321</td>
<td>Piping Support</td>
<td></td>
</tr>
<tr>
<td>Part 6</td>
<td>Systems</td>
<td>125</td>
</tr>
<tr>
<td>K322</td>
<td>Specific Piping Systems</td>
<td></td>
</tr>
<tr>
<td>Part 7</td>
<td>Materials</td>
<td>125</td>
</tr>
<tr>
<td>K323</td>
<td>General Requirements</td>
<td></td>
</tr>
<tr>
<td>K325</td>
<td>Miscellaneous Materials</td>
<td>130</td>
</tr>
<tr>
<td>Part 8</td>
<td>Standards for Piping Components</td>
<td>130</td>
</tr>
<tr>
<td>K326</td>
<td>Requirements for Components</td>
<td></td>
</tr>
<tr>
<td>Part 9</td>
<td>Fabrication, Assembly, and Erection</td>
<td>130</td>
</tr>
<tr>
<td>K327</td>
<td>General</td>
<td></td>
</tr>
<tr>
<td>K328</td>
<td>Welding</td>
<td></td>
</tr>
<tr>
<td>K330</td>
<td>Preheating</td>
<td></td>
</tr>
<tr>
<td>K331</td>
<td>Heat Treatment</td>
<td></td>
</tr>
<tr>
<td>K332</td>
<td>Bending and Forming</td>
<td></td>
</tr>
<tr>
<td>K333</td>
<td>Brazing and Soldering</td>
<td></td>
</tr>
<tr>
<td>K335</td>
<td>Assembly and Erection</td>
<td></td>
</tr>
<tr>
<td>Part 10</td>
<td>Inspection, Examination, and Testing</td>
<td>135</td>
</tr>
<tr>
<td>K340</td>
<td>Inspection</td>
<td></td>
</tr>
<tr>
<td>K341</td>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>K342</td>
<td>Examination Personnel</td>
<td></td>
</tr>
<tr>
<td>K343</td>
<td>Examination Procedures</td>
<td></td>
</tr>
<tr>
<td>K344</td>
<td>Types of Examination</td>
<td></td>
</tr>
<tr>
<td>K345</td>
<td>Leak Testing</td>
<td></td>
</tr>
<tr>
<td>K346</td>
<td>Records</td>
<td></td>
</tr>
<tr>
<td>Chapter X</td>
<td>High Purity Piping</td>
<td>140</td>
</tr>
<tr>
<td>U300</td>
<td>General Statements</td>
<td></td>
</tr>
<tr>
<td>Part 1</td>
<td>Conditions and Criteria</td>
<td>140</td>
</tr>
<tr>
<td>Part 2</td>
<td>Pressure Design of Piping Components</td>
<td>140</td>
</tr>
<tr>
<td>Part 3</td>
<td>Fluid Service Requirements for Piping Components</td>
<td>140</td>
</tr>
<tr>
<td>U308</td>
<td>Flanges, Blanks, Flange Facings, and Gaskets</td>
<td></td>
</tr>
<tr>
<td>Part 4</td>
<td>Fluid Service Requirements for Piping Joints</td>
<td>140</td>
</tr>
<tr>
<td>U311</td>
<td>Welded Joints</td>
<td></td>
</tr>
<tr>
<td>U314</td>
<td>Threaded Joints</td>
<td></td>
</tr>
<tr>
<td>U315</td>
<td>Tubing Joints</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>328.5.4E</td>
<td>Acceptable Details for Branch Attachment Suitable for 100% Radiography</td>
<td></td>
</tr>
<tr>
<td>328.5.5</td>
<td>Typical Fabricated Laps</td>
<td></td>
</tr>
<tr>
<td>335.3.3</td>
<td>Typical Threaded Joints Using Straight Threads</td>
<td></td>
</tr>
<tr>
<td>341.3.2</td>
<td>Typical Weld Imperfections</td>
<td></td>
</tr>
<tr>
<td>A328.5</td>
<td>Typical Plastic Piping Joints</td>
<td></td>
</tr>
<tr>
<td>K323.3.3</td>
<td>Example of an Acceptable Impact Test Specimen</td>
<td></td>
</tr>
<tr>
<td>K328.4.3</td>
<td>Pipe Bored for Alignment: Trimming and Permitted Misalignment</td>
<td></td>
</tr>
<tr>
<td>K328.5.4</td>
<td>Some Acceptable Welded Branch Connections Suitable for 100% Radiography</td>
<td></td>
</tr>
<tr>
<td>U304.5.3</td>
<td>Blanks</td>
<td></td>
</tr>
<tr>
<td>U335.7.1</td>
<td>Face Seal Joints</td>
<td></td>
</tr>
<tr>
<td>U335.8</td>
<td>Hygienic Clamp</td>
<td></td>
</tr>
</tbody>
</table>

Tables

- **300.4**: Status of Appendices in B31.3
- **302.3.3C**: Increased Casting Quality Factors, E_c
- **302.3.3D**: Acceptance Levels for Castings
- **302.3.4**: Longitudinal Weld Joint Quality Factor, E_j
- **302.3.5**: Weld Joint Strength Reduction Factor, W
- **304.1.1**: Values of Coefficient Y for $t < D/6$
- **304.4.1**: BPV Code References for Closures
- **308.2.1**: Permissible Sizes/Rating Classes for Slip-On Flanges Used as Lapped Flanges
- **314.2.1**: Minimum Thickness of External Threaded Components
- **323.2.2**: Requirements for Low Temperature Toughness Tests for Metals
- **323.2.2A**: Tabular Values for Minimum Temperatures Without Impact Testing for Carbon Steel Materials
- **323.3.1**: Impact Testing Requirements for Metals
- **323.3.4**: Charpy Impact Test Temperature Reduction
- **323.3.5**: Minimum Required Charpy V-Notch Impact Values
- **326.1**: Component Standards
- **330.1.1**: Preheat Temperatures
- **331.1.1**: Requirements for Heat Treatment
- **341.3.2**: Acceptance Criteria for Welds and Examination Methods for Evaluating Weld Imperfections
- **A323.2.2**: Requirements for Low Temperature Toughness Tests for Nonmetals
- **A323.4.2C**: Recommended Temperature Limits for Reinforced Thermosetting Resin Pipe
- **A323.4.3**: Recommended Temperature Limits for Thermoplastics Used as Linings
- **A326.1**: Component Standards
- **A341.3.2**: Acceptance Criteria for Bonds
- **K302.3.3D**: Acceptable Severity Levels for Steel Castings
- **K305.1.2**: Required Ultrasonic or Eddy Current Examination of Pipe and Tubing for Longitudinal Defects
- **K323.3.1**: Impact Testing Requirements
- **K323.3.5**: Minimum Required Charpy V-Notch Impact Values
- **K326.1**: Component Standards
- **K341.3.2**: Acceptance Criteria for Welds

Appendices

- **A**: Allowable Stresses and Quality Factors for Metallic Piping and Bolting Materials
- **A-1**: Specification Index for Appendix A
- **Table A-1 Basic Allowable Stresses in Tension for Metals**

Copyright © 2013 by the American Society of Mechanical Engineers. No reproduction may be made of this material without written consent of ASME.
Table A-1B Basic Quality Factors for Longitudinal Weld Joints in Pipes, Tubes, and Fittings, E_f 333
Carbon Steel ... 333
Low and Intermediate Alloy Steel .. 333
Stainless Steel ... 334
Copper and Copper Alloy ... 334
Nickel and Nickel Alloy ... 335
Titanium and Titanium Alloy .. 335
Zirconium and Zirconium Alloy .. 335
Aluminum Alloy .. 335

Table A-2 Design Stress Values for Bolting Materials 336
Carbon Steel ... 336
Alloy Steel .. 336
Stainless Steel ... 336
Copper and Copper Alloy ... 342
Nickel and Nickel Alloy ... 342
Aluminum Alloy .. 344

Table A-2M Design Stress Values for Bolting Materials (Metric) 346
B Stress Tables and Allowable Pressure Tables for Nonmetals 362
C Physical Properties of Piping Materials 369
D Flexibility and Stress Intensification Factors 384
E Reference Standards ... 388
F Precautionary Considerations .. 394
G Safeguarding .. 399
H Sample Calculations for Branch Reinforcement 400
J Nomenclature .. 409
K Allowable Stresses for High Pressure Piping 422
L Aluminum Alloy Pipe Flanges ... 436
M Guide to Classifying Fluid Services 439
N Application of ASME B31.3 Internationally 441
P Alternative Rules for Evaluating Stress Range 442
Q Quality System Program ... 444
S Piping System Stress Analysis Examples 445
V Allowable Variations in Elevated Temperature Service 458
X Metallic Bellows Expansion Joints .. 461
Z Preparation of Technical Inquiries .. 466
Index ... 467
Responding to evident need and at the request of The American Society of Mechanical Engineers, the American Standards Association initiated Project B31 in March 1926, with ASME as sole administrative sponsor. The breadth of the field involved required that membership of the Sectional Committee be drawn from some 40 engineering societies, industries, government bureaus, institutes, and trade associations.

Initial publication in 1935 was as the American Tentative Standard Code for Pressure Piping. Revisions from 1942 through 1955 were published as American Standard Code for Pressure Piping, ASA B31.1. It was then decided to publish as separate documents the various industry Sections, beginning with ASA B31.8-1955, Gas Transmission and Distribution Piping Systems. The first Petroleum Refinery Piping Code Section was designated ASA B31.3-1959. ASA B31.3 revisions were published in 1962 and 1966.

In 1967–1969, the American Standards Association became first the United States of America Standards Institute, then the American National Standards Institute. The Sectional Committee became American National Standards Committee B31 and the Code was renamed the American National Standard Code for Pressure Piping. The next B31.3 revision was designated ANSI B31.3-1973. Addenda were published through 1975.

A draft Code Section for Chemical Plant Piping, prepared by Section Committee B31.6, was ready for approval in 1974. It was decided, rather than have two closely related Code Sections, to merge the Section Committees and develop a joint Code Section, titled Chemical Plant and Petroleum Refinery Piping. The first edition was published as ANSI B31.3-1976.

In this Code, responsibility for piping design was conceptually integrated with that for the overall processing facility, with safeguarding recognized as an effective safety measure. Three categories of Fluid Service were identified, with a separate Chapter for Category M Fluid Service. Coverage for nonmetallic piping was introduced. New concepts were better defined in five Addenda, the fourth of which added Appendix M, a graphic aid to selection of the proper Fluid Service category.

The Standards Committee was reorganized in 1978 as a Committee operating under ASME procedures with ANSI accreditation. It is now the ASME Code for Pressure Piping, B31 Committee. Section committee structure remains essentially unchanged.

The second edition of Chemical Plant and Petroleum Refinery Piping was compiled from the 1976 Edition and its five Addenda, with nonmetal requirements editorially relocated to a separate Chapter. Its new designation was ANSI/ASME B31.3-1980.

Section Committee B31.10 had a draft Code for Cryogenic Piping ready for approval in 1981. Again, it was decided to merge the two Section Committees and develop a more inclusive Code with the same title. The work of consolidation was partially completed in the ANSI/ASME B31.3-1984 Edition.

Significant changes were made in Addenda to the 1984 Edition: integration of cryogenic requirements was completed; a new stand-alone Chapter on high-pressure piping was added; and coverage of fabrication, inspection, testing, and allowable stresses was reorganized. The new Edition was redesignated as ASME/ANSI B31.3-1987 Edition.

Addenda to subsequent Editions, published at three-year intervals, have been primarily to keep the Code up-to-date. New Appendices have been added, however, on requirements for bellows expansion joints, estimating service life, submittal of Inquiries, aluminum flanges, and quality control in the 1990, 1993, 1999, and 2002 Editions, all designated as ASME B31.3.

In a program to clarify the application of all Sections of the Code for Pressure Piping, changes were made in the Introduction and Scope statements of the 1996 Edition, and its title was changed to Process Piping.

Under direction of ASME Codes and Standards management, metric units of measurement are being emphasized. With certain exceptions, SI metric units were listed first in the 1996 Edition and were designated as the standard. Instructions for conversion are given where metric data are not available. U.S. customary units also are given. By agreement, either system may be used.
In this Edition of the Code, SI metric units are given first, with U.S. Customary units in parentheses. Appendices H and X, the table in Appendix K, and Tables C-1, C-3, and C-6 in Appendix C are exceptions. A portion of the allowable design values in Appendix A are given in both SI metric and U.S. Customary units. Except for Appendix A, values in metric units are to be regarded as the standard, unless otherwise agreed between the contracting parties. In Appendix A, the U.S. Customary units are to be regarded as the standard. Instructions are given in those tables for converting tabular data in U.S. Customary units to appropriate SI metric units. Interpretations, Code Cases, and errata to the B31.3 Code on Process Piping are published on the following ASME web page: http://cstools.asme.org/csconnect/CommitteePages.cfm?Committee=N10020400.

ASME B31.3-2012 was approved by the American National Standards Institute on May 9, 2012.
ASME B31 COMMITTEE
Code for Pressure Piping
(The following is the roster of the Committee at the time of approval of this Code.)

STANDARDS COMMITTEE OFFICERS
M. L. Nayyar, Chair
J. E. Meyer, Vice Chair
N. Lobo, Secretary

STANDARDS COMMITTEE PERSONNEL
R. J. T. Appleby, ExxonMobil Development Co.
C. Becht IV, Becht Engineering Co.
A. E. Beyer, Fluor Enterprises
K. C. Bodenhamer, Enterprise Products Co.
C. J. Campbell, Air Liquide
J. S. Chin, TransCanada Pipeline U.S.
D. D. Christian, Victaulic
D. L. Coy, Intertek Moody
C. J. Melo, Alternate, S&B Engineers and Constructors, Ltd.
R. P. Deubler, Frondek Power Systems, LLC
P. D. Flennor, Flennor Engineering Services
J. W. Frey, Stress Engineering Services, Inc.
D. R. Frikken, Becht Engineering Co.
R. A. Grichuk, Fluor Enterprises, Inc.
R. W. Haupt, Pressure Piping Engineering Associates, Inc.
B. P. Holbrook, Babcock Power, Inc.
G. A. Jolly, Vogt Valves/Flowserve Corp.
N. Lobo, The American Society of Mechanical Engineers
W. J. Mauro, American Electric Power
M. L. Nayyar
R. G. Payne, Alstom Power, Inc.
G. R. Petru, EPCO Inc.
E. H. Rinaca, Dominion Resources, Inc.
M. J. Rosenfeld, Kiefner/Applus — RTD
R. J. Silvia, Process Engineers & Constructors, Inc.
W. J. Sperko, Sperko Engineering Services, Inc.
F. W. Tatar, FM Global
K. A. Vilmintov, Black & Veatch
A. Soni, Delegate, Engineers India Ltd.
L. E. Hayden, Jr., Ex-Officio Member
W. J. Koves, Ex-Officio Member, Pi Engineering Software, Inc.
A. P. Rangus, Ex-Officio Member, Bechtel
J. T. Schmitz, Ex-Officio Member, Southwest Gas Corp.
R. A. Appleton, Contributing Member, Refrigeration Systems Co.

B31.3 PROCESS PIPING SECTION COMMITTEE
J. E. Meyer, Chair, Louis Perry & Associates, Inc.
R. W. Engle, Vice Chair, The Dow Chemical Co.
R. Mohamed, Secretary, The American Society of Mechanical Engineers
B. L. Agee, General Electric Co.
C. Becht IV, Becht Engineering Co.
R. M. Bojarczuk, ExxonMobil Research & Engineering Co.
R. D. Campbell, Bechtel Construction Operations, Inc.
D. D. Christian, Victaulic
D. L. Coy, Intertek Moody
J. A. D’Avanzo, DuPont Engineering
C. E. Davila, Crane Energy
D. W. Diehl, Intergraph Corp.
D. R. Edwards, ConocoPhillips
J. P. Ellsonberger
C. H. Eskridge, Jr., Jacobs Engineering
D. J. Fetzner, BP Exploration Alaska, Inc.
P. D. Flennor, Flennor Engineering Services
D. R. Fraser, NASA Ames Research Center
D. R. Frikken, Becht Engineering Co.
O. R. Greulich, NASA
R. A. Grichuk, Fluor Enterprises, Inc.
P. J. Guerrieri, Sr., Integrated Mechanical Services, Inc.
R. W. Haupt, Pressure Piping Engineering Associates, Inc.
B. K. Henon, ARC Machines, Inc.
J. F. Hodgins, Car-Ber Testing Services
W. J. Koves, Pi Engineering Software, Inc.
R. A. McLeod, Circor Instrumentation Technologies
R. J. Medwick, Consultant
C. J. Melo, S&B Engineers and Constructors, Ltd.
V. B. Molina III, Air Products & Chemicals, Inc.
C. A. Moore, Smith Fibercast
A. D. Nalbandian, Thielsch Engineering, Inc.
K. A. Nisly-Nagele, Archer Daniels Midland Co.
C. D. Pham, SBM Offshore, Inc.
J. M. Prawdzik
D. W. Rahoi, CCM 2000
A. P. Rangus, Bechtel
R. K. Reamey, Turner Industries Group, LLC
G. C. Reinhardt II, Team Industries, Inc.
P. E. Robinson, Parker Hannifin Corp.
K. S. Shipley, The Equity Engineering Group, Inc.
C. Y. Shyu, ExxonMobil Development Co.
R. J. Silvia, Process Engineers & Constructors, Inc.
B31.3 Subgroup on High Pressure Piping

<table>
<thead>
<tr>
<th>Chair</th>
<th>Company/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. P. Rangus</td>
<td>Bechtel</td>
</tr>
<tr>
<td>D. R. Fraser</td>
<td>NASA Ames Research Center</td>
</tr>
<tr>
<td>O. R. Greulich</td>
<td>NASA</td>
</tr>
<tr>
<td>R. J. Medvick</td>
<td>Consultant</td>
</tr>
<tr>
<td>M. H. Nguyen</td>
<td>Lockwood International</td>
</tr>
<tr>
<td>F. W. Tatar</td>
<td>FM Global</td>
</tr>
<tr>
<td>Q. N. Truong</td>
<td>Refinery Technology, Inc.</td>
</tr>
<tr>
<td>W. L. Weeks</td>
<td>Lummus Technology</td>
</tr>
</tbody>
</table>

B31.3 Subgroup on High Purity Systems

<table>
<thead>
<tr>
<th>Chair</th>
<th>Company/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. B. Molina III</td>
<td>Air Products & Chemicals, Inc.</td>
</tr>
<tr>
<td>G. A. Babuder</td>
<td>Swagelok Co.</td>
</tr>
<tr>
<td>D. W. Cobb</td>
<td>ARC Machines, Inc.</td>
</tr>
<tr>
<td>P. J. Guerrieri, Sr.</td>
<td>Integrated Mechanical Services, Inc.</td>
</tr>
<tr>
<td>B. K. Henon</td>
<td>ARC Machines, Inc.</td>
</tr>
<tr>
<td>W. M. Huitt</td>
<td>W. M. Huitt Co.</td>
</tr>
<tr>
<td>P. E. Robinson</td>
<td>Parker Hannifin Corp.</td>
</tr>
</tbody>
</table>

B31.3 Subgroup on Materials

<table>
<thead>
<tr>
<th>Chair</th>
<th>Company/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. A. Grichuk</td>
<td>Fluor Enterprises, Inc.</td>
</tr>
<tr>
<td>B. L. Agee</td>
<td>General Electric Co.</td>
</tr>
<tr>
<td>C. Chang</td>
<td>Bechtel National, Inc.</td>
</tr>
<tr>
<td>L. K. Hovey</td>
<td>ConocoPhillips</td>
</tr>
<tr>
<td>M. Katcher</td>
<td>Haynes International</td>
</tr>
<tr>
<td>J. M. Prawdzik</td>
<td></td>
</tr>
<tr>
<td>D. W. Rahoi</td>
<td>CCM 2000</td>
</tr>
<tr>
<td>A. Raza</td>
<td>Pi Engineering, Inc.</td>
</tr>
<tr>
<td>J. L. Smith</td>
<td>Jacobs Engineering Group</td>
</tr>
<tr>
<td>S. Tang</td>
<td>Swagelok Co.</td>
</tr>
<tr>
<td>S. J. Tonkins</td>
<td>BP Exploration Alaska, Inc.</td>
</tr>
<tr>
<td>W. Jianyu</td>
<td>Contributing Member, SINOPC Shanghai Engineering Corp.</td>
</tr>
<tr>
<td>K. Songlin</td>
<td>Contributing Member, SINOPC Engineering, Inc.</td>
</tr>
</tbody>
</table>

B31.3 Subgroup on Non-Metallic Piping

<table>
<thead>
<tr>
<th>Chair</th>
<th>Company/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. A. Moore</td>
<td>Smith Fibercast</td>
</tr>
<tr>
<td>M. A. Clark</td>
<td>Nibco, Inc.</td>
</tr>
<tr>
<td>J. D. Eisenman</td>
<td>Maverick Applied Science, Inc.</td>
</tr>
<tr>
<td>J. B. Immel</td>
<td>Spears Manufacturing Co.</td>
</tr>
<tr>
<td>J. M. Kalnins</td>
<td>Crane ChemPharma Flow Solutions — Resistoflex</td>
</tr>
<tr>
<td>D. A. McGriff</td>
<td>ISCO Industries, LLC</td>
</tr>
<tr>
<td>T. R. McPherson</td>
<td>IPS Corp.</td>
</tr>
</tbody>
</table>

B31.3 Process Piping, India International Working Group

<table>
<thead>
<tr>
<th>Chair</th>
<th>Company/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. P. Singh</td>
<td>CB&I Lummus Private Ltd.</td>
</tr>
<tr>
<td>A. Kumar</td>
<td>Vice Chair, Larsen & Toubro Ltd.</td>
</tr>
<tr>
<td>R. Mohamed</td>
<td>Secretary, The American Society of Mechanical Engineers</td>
</tr>
<tr>
<td>S. Biswas</td>
<td>CH2M Hill</td>
</tr>
<tr>
<td>S. Garg</td>
<td>Punjab Lloyd Ltd.</td>
</tr>
<tr>
<td>R. Goel</td>
<td>Bechtel India Ltd.</td>
</tr>
<tr>
<td>P. Govindaraj</td>
<td>Dow Chemical International Private Ltd.</td>
</tr>
<tr>
<td>R. Hariharan</td>
<td>L&T Chiyoda</td>
</tr>
<tr>
<td>A. Jettley</td>
<td>Bechtel India Private Ltd.</td>
</tr>
<tr>
<td>R. K. Mittal</td>
<td>GAIL (India) Ltd.</td>
</tr>
<tr>
<td>R. Muruganantham</td>
<td>Larsen & Toubro Ltd.</td>
</tr>
<tr>
<td>R. Nanda</td>
<td>Engineers India Ltd.</td>
</tr>
<tr>
<td>P. Pravin Buddhadeo</td>
<td>Bechtel India Private Ltd.</td>
</tr>
<tr>
<td>P. Sanyal</td>
<td>Bechtel India Private Ltd.</td>
</tr>
<tr>
<td>C. N. Trivedi</td>
<td>GAIL (India) Ltd.</td>
</tr>
<tr>
<td>R. K. Srivastava</td>
<td>Alternate, Larsen & Toubro Ltd.</td>
</tr>
</tbody>
</table>

B31 Fabrication and Examination Committee

<table>
<thead>
<tr>
<th>Chair</th>
<th>Company/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. P. Rangus</td>
<td>Bechtel</td>
</tr>
<tr>
<td>F. Huang</td>
<td>Secretary, The American Society of Mechanical Engineers</td>
</tr>
<tr>
<td>J. P. Ellenberger</td>
<td></td>
</tr>
<tr>
<td>R. J. Ferguson</td>
<td>Metallurgist</td>
</tr>
<tr>
<td>D. J. Fetzer</td>
<td>BP Exploration Alaska, Inc.</td>
</tr>
<tr>
<td>P. D. Flenner</td>
<td>Flenner Engineering Services</td>
</tr>
<tr>
<td>J. W. Frey</td>
<td>Stress Engineering Services, Inc.</td>
</tr>
<tr>
<td>W. W. Lewis</td>
<td>E. I. DuPont</td>
</tr>
<tr>
<td>S. P. Licud</td>
<td>Consultant</td>
</tr>
<tr>
<td>T. Monday</td>
<td>Team Industries, Inc.</td>
</tr>
<tr>
<td>A. D. Halbandian</td>
<td>Thielisch Engineering, Inc.</td>
</tr>
<tr>
<td>R. I. Seals</td>
<td>Consultant</td>
</tr>
<tr>
<td>R. J. Silvia</td>
<td>Process Engineers & Constructors, Inc.</td>
</tr>
<tr>
<td>W. J. Sperko</td>
<td>Sperko Engineering Services, Inc.</td>
</tr>
<tr>
<td>J. P. Swezy, Jr.</td>
<td>UT-Battelle</td>
</tr>
<tr>
<td>P. L. Vaughan</td>
<td>ONEOK Partners</td>
</tr>
</tbody>
</table>
B31 MATERIALS TECHNICAL COMMITTEE

R. A. Grichuk, Chair, Fluor Enterprises, Inc.
N. Lobo, Secretary, The American Society of Mechanical Engineers
R. P. Deubler, Fronek Power Systems, LLC
C. H. Eskridge, Jr., Jacobs Engineering
G. A. Jolly, Vogt Valves/Flowserve Corp.
C. J. Melo, S&B Engineers & Constructors, Ltd.
M. L. Nayyar

B31 MECHANICAL DESIGN TECHNICAL COMMITTEE

W. J. Koves, Chair, PI Engineering Software, Inc.
G. A. Antaki, Vice Chair, Becht Engineering Co., Inc.
C. E. O’Brien, Secretary, The American Society of Mechanical Engineers
D. Arnett, Fluor Enterprises, Inc.
C. Becht IV, Becht Engineering Co.
R. Bethea, Huntington Ingalls Industries — Newport News Shipbuilding
J. P. Breen, Becht Engineering Co.
P. Cakir-Kavcar, Bechtel Corp. — Oil, Gas & Chemicals
N. F. Consumo, Sr., Nuclear Engineer
J. P. Ellenberger
D. J. Fetzner, BP Exploration Alaska, Inc.
J. A. Graziano, Consultant
R. W. Haupt, Pressure Piping Engineering Associates, Inc.

B31 CONFERENCE GROUP

A. Bell, Bonneville Power Administration
R. A. Coomes, Commonwealth of Kentucky, Department of Housing/Boiler Section
D. H. Hanrath, Alabama Public Service Commission
D. T. Jagger, Ohio Department of Commerce
M. Kotb, Régie du Bâtiment du Québec
K. T. Lau, Alberta Boilers Safety Association
R. G. Marini, New Hampshire Public Utilities Commission
I. W. Mault, Manitoba Department of Labour
A. W. Meiring, Fire and Building Boiler and Pressure Vessel Division/Indiana

R. A. Pickell, Willbros Engineers, Inc.
D. W. Rahoi, CCM 2000
R. A. Schmidt, Canadoil
H. R. Simpson, Stantec
J. L. Smith, Jacobs Engineering Group
Z. Djilali, Contributing Member, BEREP

B. P. Holbrook, Babcock Power, Inc.
R. A. Leishear, Savannah River National Laboratory
G. D. Mayers, Alion Science & Technology
J. F. McCabe, General Dynamics Electric Boat
T. Q. McCawley, TQM Engineering PC
R. J. Medvick, Consultant
J. C. Minichietto, Bechtel National, Inc.
A. W. Paulin, Paulin Resource Group
R. A. Robleto, KBR
M. J. Rosenfeld, Kiefer/Applus — RTD
T. Sato, Japan Power Engineering and Inspection Corp.
G. Stevick, Berkeley Engineering and Research, Inc.
E. A. Wais, Wais and Associates, Inc.
H. Kosasayama, Delegate, IGC Corp.
E. C. Rodabaugh, Honorary Member, Consultant

R. F. Mullaney, Boiler and Pressure Vessel Safety Branch/Vancouver
P. Sher, State of Connecticut
M. E. Skarda, Arkansas Department of Labor
D. A. Starr, Nebraska Department of Labor
D. J. Stursma, Iowa Utilities Board
R. P. Sullivan, The National Board of Boiler and Pressure Vessel Inspectors
J. E. Troppman, Division of Labor/State of Colorado Boiler Inspections
W. A. M. West, Lighthouse Assistance, Inc.
T. F. Wickham, Rhode Island Department of Labor
INTRODUCTION

The ASME B31 Code for Pressure Piping consists of a number of individually published Sections, each an American National Standard, under the direction of ASME Committee B31, Code for Pressure Piping.

Rules for each Section reflect the kinds of piping installations considered during its development, as follows:

B31.1 Power Piping: piping typically found in electric power generating stations, in industrial and institutional plants, geothermal heating systems, and central and district heating and cooling systems
B31.3 Process Piping: piping typically found in petroleum refineries; chemical, pharmaceutical, textile, paper, semiconductor, and cryogenic plants; and related processing plants and terminals
B31.4 Pipeline Transportation Systems for Liquids and Slurries: piping transporting products that are predominately liquid between plants and terminals and within terminals, pumping, regulating, and metering stations
B31.5 Refrigeration Piping: piping for refrigerants and secondary coolants
B31.8 Gas Transmission and Distribution Piping Systems: piping transporting products that are predominately gas between sources and terminals, including compressor, regulating, and metering stations; gas gathering pipelines
B31.9 Building Services Piping: piping typically found in industrial, institutional, commercial, and public buildings, and in multi-unit residences, which does not require the range of sizes, pressures, and temperatures covered in B31.1
B31.11 Slurry Transportation Piping Systems: piping transporting aqueous slurries between facilities, plants, and terminals, and within terminals and pumping and regulating stations.
B31.12 Hydrogen Piping and Pipelines: piping in gaseous and liquid hydrogen service and pipelines in gaseous hydrogen service

This is the B31.3 Process Piping Code Section. Hereafter, in this Introduction and in the text of this Code Section B31.3, where the word Code is used without specific identification, it means this Code Section.

It is the owner’s responsibility to select the Code Section that most nearly applies to a proposed piping installation. Factors to be considered by the owner include limitations of the Code Section; jurisdictional requirements; and the applicability of other codes and standards. All applicable requirements of the selected Code Section shall be met. For some installations, more than one Code Section may apply to different parts of the installation. The owner is also responsible for imposing requirements supplementary to those of the Code if necessary to assure safe piping for the proposed installation.

Certain piping within a facility may be subject to other codes and standards, including but not limited to

- ANSI Z223.1 National Fuel Gas Code: piping for fuel gas from the point of delivery to the connection of each fuel utilization device
- NFPA Fire Protection Standards: fire protection systems using water, carbon dioxide, halon, foam, dry chemicals, and wet chemicals
- NFPA 99 Health Care Facilities: medical and laboratory gas systems
- building and plumbing codes, as applicable, for potable hot and cold water, and for sewer and drain systems

1 Incorporated into B31.4-2012.
The Code sets forth engineering requirements deemed necessary for safe design and construction of pressure piping. While safety is the basic consideration, this factor alone will not necessarily govern the final specifications for any piping installation. The designer is cautioned that the Code is not a design handbook; it does not eliminate the need for the designer or for competent engineering judgment.

To the greatest possible extent, Code requirements for design are stated in terms of basic design principles and formulas. These are supplemented as necessary with specific requirements to ensure uniform application of principles and to guide selection and application of piping elements. The Code prohibits designs and practices known to be unsafe and contains warnings where caution, but not prohibition, is warranted.

This Code Section includes the following:
(a) references to acceptable material specifications and component standards, including dimensional requirements and pressure-temperature ratings
(b) requirements for design of components and assemblies, including piping supports
(c) requirements and data for evaluation and limitation of stresses, reactions, and movements associated with pressure, temperature changes, and other forces
(d) guidance and limitations on the selection and application of materials, components, and joining methods
(e) requirements for the fabrication, assembly, and erection of piping
(f) requirements for examination, inspection, and testing of piping

ASME Committee B31 is organized and operates under procedures of The American Society of Mechanical Engineers that have been accredited by the American National Standards Institute. The Committee is a continuing one, and keeps all Code Sections current with new developments in materials, construction, and industrial practice. New editions are published at intervals of two years.

Code users will note that paragraphs in the Code are not necessarily numbered consecutively. Such discontinuities result from following a common outline, insofar as practical, for all Code Sections. In this way, corresponding material is correspondingly numbered in most Code Sections, thus facilitating reference by those who have occasion to use more than one Section.

It is intended that this edition of Code Section B31.3 not be retroactive. Unless agreement is specifically made between contracting parties to use another issue, or the regulatory body having jurisdiction imposes the use of another issue, the latest edition issued at least 6 mo prior to the original contract date for the first phase of activity covering a piping installation shall be the governing document for all design, materials, fabrication, erection, examination, and testing for the piping until the completion of the work and initial operation.

Users of this Code are cautioned against making use of Code revisions without assurance that they are acceptable to the proper authorities in the jurisdiction where the piping is to be installed.

The B31 Committee has established an orderly procedure to consider requests for interpretation and revision of Code requirements. To receive consideration, such request must be in writing and must give full particulars in accordance with Appendix Z.

The approved reply to an inquiry will be sent directly to the inquirer. In addition, the question and reply will be published as part of an Interpretation supplement.

A Case is the prescribed form of reply when study indicates that the Code wording needs clarification, or when the reply modifies existing requirements of the Code or grants permission to use new materials or alternative constructions. The Case will be published as part of a Case supplement.

Code Cases remain available for use until annulled by the ASME B31 Standards Committee. A request for revision of the Code will be placed on the Committee’s agenda. Further information or active participation on the part of the proponent may be requested during consideration of a proposed revision.

Materials ordinarily are listed in the stress tables only when sufficient usage in piping within the scope of the Code has been shown. Requests for listing shall include evidence of satisfactory usage and specific data to permit establishment of allowable stresses, maximum and minimum temperature limits, and other restrictions. Additional criteria can be found in the guidelines for addition of new materials in the ASME Boiler and Pressure Vessel Code, Section II. (To develop usage and gain experience, unlisted materials may be used in accordance with para. 323.1.2.)
ASME B31.3-2012
SUMMARY OF CHANGES

Following approval by the B31 Committee and ASME, and after public review, ASME B31.3-2012 was approved by the American National Standards Institute on May 9, 2012.

Changes given below are identified on the pages by a margin note, (12), placed next to the affected area.

<table>
<thead>
<tr>
<th>Page Location</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>xix, xx</td>
<td>Ninth-to-last and third-to-last paragraphs revised</td>
</tr>
</tbody>
</table>
| 1–7 300 | (1) Subparagraph (b)(1) revised
(2) Subparagraph (d) revised
(3) Subparagraph (e) deleted
(4) Subparagraph (f) redesignated as (e) and new subparagraph (f) added |
| 300.2 | (1) Definition of autogenous weld added
(2) Under fluid service, definitions of Category D Fluid Service, Elevated Temperature Fluid Service, and Normal Fluid Service revised, and all definitions alphabetized
(3) Definition of orbital welding revised
(4) Under pipe, definition of spiral welded pipe revised
(5) Definition of room temperature added |
| 9 Table 300.4 | Entry for Appendix N added |
| 10 301.1 | Subparagraph (a) revised |
| 12 302.2.2 | Revised |
| 13, 14 302.3.2| In subparagraph (d), last paragraph revised |
| 15–20 Table 302.3.3C | General Note revised |
| 302.3.4 | Subparagraph (a) revised |
| 302.3.5 | Subparagraphs (d) and (e) revised |
| Table 302.3.4| (1) Entries in fourth column revised
(2) Last row revised |
| 302.5 | Paragraph 302.4.1 redesignated as 302.5 and revised |
| 303 | Revised |
| Table 302.3.5| (1) General Note (b) and Notes (1), (2), and (9) revised
(2) General Note (e) added |
<p>| 22 304.3.2 | Subparagraphs (a) and (b) revised |
| 29 304.7.2 | First paragraph revised |</p>
<table>
<thead>
<tr>
<th>Page</th>
<th>Location</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>305.2.4</td>
<td>Revised</td>
</tr>
<tr>
<td>34</td>
<td>311.2.3</td>
<td>Revised</td>
</tr>
<tr>
<td>37</td>
<td>319.2.3</td>
<td>Subparagraph (c) deleted</td>
</tr>
<tr>
<td>38, 39</td>
<td>319.3.6</td>
<td>Revised</td>
</tr>
<tr>
<td></td>
<td>319.4.4</td>
<td>Revised</td>
</tr>
<tr>
<td>46</td>
<td>323.2</td>
<td>Revised</td>
</tr>
<tr>
<td>49</td>
<td>Fig. 323.2.2A</td>
<td>Note (3) revised</td>
</tr>
<tr>
<td>56</td>
<td>326.1.2</td>
<td>Cross-reference revised</td>
</tr>
</tbody>
</table>
| 57, 58| Table 326.1 | (1) Under Metallic Fittings, Valves, and Flanges, ASME B16.50 and MSS SP-78 added
| | | (2) Under Miscellaneous, MSS SP-73 deleted |
| 59 | 328 | Revised |
| | 328.1 | Revised |
| | 328.2 | Revised in its entirety |
| 65 | 330.1 | Revised |
| | 330.1.1 | Revised |
| 66 | Table 330.1.1 | Revised in its entirety |
| 67 | 331.1.1 | Subparagraph (e) revised |
| 68, 69| Table 331.1.1 | First column head and Note (1) revised |
| 71 | 333 | Revised in its entirety |
| 73 | 340.4 | Subparagraph (b) revised |
| 74 | 341.3.4 | Subparagraph (a) revised |
| | 341.4.1 | Subparagraph (b)(1) revised |
| 77 | Table 341.3.2 | Note (3) revised |
| 79 | 341.4.4 | First paragraph and subparagraph (b)(1) revised |
| 80 | 344.1.3 | Footnote 2 revised |
| 82 | 345.1 | Subparagraphs (c)(1) and (c)(2) revised |
| 84 | 345.5.1 | Revised |
| | 345.7.3 | Revised |
| | 345.8 | Revised |
| | 345.9.1 | Subparagraph (a) revised |
| 91 | A314.2.1 | Revised |
| 97, 98| Table A326.1 | (1) ASTM F2389 added in two places
<p>| | | (2) ASTM D2104 deleted |
| 99 | A328.2.5 | Subparagraphs (a)(1) and (a)(2) revised |</p>
<table>
<thead>
<tr>
<th>Page</th>
<th>Location</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>117</td>
<td>K302.3.2</td>
<td>Previous footnote 1 deleted and remaining footnotes renumbered</td>
</tr>
<tr>
<td></td>
<td>K302.3.3</td>
<td>In subparagraph (c), cross-reference revised</td>
</tr>
<tr>
<td></td>
<td>K302.3.4</td>
<td>Revised</td>
</tr>
<tr>
<td>118</td>
<td>K302.5</td>
<td>Paragraph K302.4.1 redesignated as K302.5 and revised</td>
</tr>
<tr>
<td>122</td>
<td>K305.1.1</td>
<td>Revised</td>
</tr>
<tr>
<td></td>
<td>K306.1.1</td>
<td>Revised</td>
</tr>
<tr>
<td>126</td>
<td>K323.2</td>
<td>Revised</td>
</tr>
<tr>
<td>130</td>
<td>K326</td>
<td>Revised in its entirety</td>
</tr>
<tr>
<td>131</td>
<td>K328.2.1</td>
<td>Subparagraph (h) deleted</td>
</tr>
<tr>
<td>137</td>
<td>K344.6.2</td>
<td>Revised</td>
</tr>
<tr>
<td>139</td>
<td>K346.2</td>
<td>Subparagraphs (d) and (g) revised</td>
</tr>
<tr>
<td>142</td>
<td>U328</td>
<td>Revised</td>
</tr>
<tr>
<td></td>
<td>U328.2.1</td>
<td>Subparagraph (h) added</td>
</tr>
<tr>
<td></td>
<td>U341.4.1</td>
<td>Revised in its entirety</td>
</tr>
<tr>
<td>144</td>
<td>U344.8.1</td>
<td>First paragraph revised</td>
</tr>
<tr>
<td></td>
<td>U344.8.2</td>
<td>Revised</td>
</tr>
<tr>
<td>148–150</td>
<td>Specification Index for Appendix A</td>
<td>ASTM A213, A1010, A1053, and B371 added</td>
</tr>
</tbody>
</table>
(2) General Notes (a) through (c) revised
(3) Notes (5) and (35) revised |
| 155 | Table A-1 | UNS Nos. added |
| 156, 158 | Table A-1 | Seventh column heading revised and all S-Nos. replaced by P-Nos. |
| 160 | Table A-1 | (1) Seventh column heading revised and all S-Nos. replaced by P-Nos.
(2) Under Carbon Steel, Pipes (Structural Grade), in Material column, A570 replaced by A1011 in six rows |
| 162, 163 | Table A-1 | (1) Under Plates, Bars, Shapes, and Sheets (Structural), in Spec. No. column, A570 replaced by A1011 in six rows
(2) Under Castings, A352 Grade LCC added |
<p>| 164, 166, 168, 170 | Table A-1 | Under Low and Intermediate Alloy Steel, UNS Nos. added |
| 172, 173 | Table A-1 | Under Stainless Steel, Pipes and Tubes, A213 Grades TP304L and TP316L added |</p>
<table>
<thead>
<tr>
<th>Page</th>
<th>Location</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>174, 175</td>
<td>Table A-1</td>
<td>A213 Grade TP316 added</td>
</tr>
</tbody>
</table>
| 176, 177 | Table A-1 | (1) A213 Grade TP304 added
(2) A1053 Grade 50 added
(3) A790 and A789 S32003 added
(4) For A789 and A790 S32750, stress value in Min. Temp. to 100°F column revised
(5) Under Plates and Sheets, A1010 Grades 40 and 50 added |
| 178, 179 | Table A-1 | Two A240 S32003 rows added |
| 182, 183 | Table A-1 | Under Bar, A479 Grades 321, 321H, 347, 347H, and XM-19 added |
| 186, 187 | Table A-1 | Under new body heading Copper and Copper Alloy, Rod, three B371 C69300 rows added |
| 188, 189 | Table A-1 | (1) Under Nickel and Nickel Alloy, Pipes and Tubes, for B407 N08811, stress values for 1,550°F through 1,650°F revised
(2) B619, B622, and B626 N06030 added |
| 190, 191 | Table A-1 | (1) For B619 N10276, stress values for 850°F through 1,250°F added
(2) For B622 N10276, stress values for 850°F and higher changed to boldface or regular type
(3) B626 N10276 added
(4) B619, B622, and B626 N06230 added |
| 192, 193 | Table A-1 | (1) Under Plates and Sheets, B582 N06030 added
(2) For B575 N10276, stress values for 850°F and higher changed to boldface or regular type
(3) B435 N06230 added |
| 194, 195 | Table A-1 | (1) Under Forgings and Fittings, B366 and B462 N06030 added
(2) For B366 and B564 N10276, stress values for 500°F and higher changed to boldface or regular type
(3) B564 and B366 N06230 added |
| 196, 197 | Table A-1 | (1) Under Rod and Bar, B408 N08810, N08811, and N08800 relocated from pages for Pipes and Tubes
(2) B581 N06030 added
(3) B574 N10276 added
(4) B572 N06230 added |
Page 198, 199 Table A-1 (1) Under Titanium and Titanium Alloy, Pipes and Tubes, for B861 and B862 R50250, Notes, Min. Yield Strength, and stress values revised
(2) For B861 and B862 R50400, R52400, and R50550, Notes revised

Page 200–205 Table A-1 (1) Sixth column heading revised and all S-Nos. replaced by P-Nos.
(2) UNS Nos. added
(3) Under Aluminum Alloy, stress values revised
(4) Under Plates and Sheets, for last B209 A95456, Temper revised
(5) Under Forgings and Fittings, for three B247 A95083 rows, Min. Tensile Strength revised

Page 206–331 Table A-1M Added

Page 333 Table A-1B (1) Under Carbon Steel, for API 5L, second row added
(2) For fourth API 5L row, A134, and A139, Description revised
(3) For first A381 row, Appendix A Notes revised

Page 336–345 Table A-2 Revised in its entirety

Page 346–361 Table A-2M Added

Page 363 Specification Index for Appendix B (1) ASTM D2104 deleted
(2) ASTM F2389 added

Page 365, 366 Table B-1 (1) All six ASTM D2104 rows deleted
(2) ASTM F2389 added

Page 378 Table C-5 (1) For polyethylene, all previous entries deleted and PE2606 through PE4710 added
(2) Polypropylene PP0210B44002 and PP0210G07G11030 added

Page 380, 381 Table C-6 Under Copper and Copper Alloys, second Material entry revised

Page 383 Table C-8 (1) Previous PE entries deleted
(2) PE2606 through PE4710 added

Page 387 Table D300 Note (2) revised
Page 388–392 Appendix E

Change

2. ASTM A213, A1010, A1011, A1053, B32, B371, B572, and F2389 added
3. ASTM A570 and D2104 deleted
4. ASME B16.50 and PCC-2 added
5. API 526, 594, 600, and 609 updated
6. API 570 added
7. All three ASNT standards updated
8. AWS A3.0, A5.11, and A5.22 updated
9. AWS A5.8, A5.31, and QC1 added
10. CDA Copper Tube Handbook deleted
11. CEN/TR 14549 added
12. CGA G-4.1 updated
13. ISO 15649 added
14. MSS SP-73 deleted
15. MSS SP-78 added
16. MSS SP-55 updated
17. PFI ES-48 added
18. In list of organizations, CDA deleted, and CEN and ISO added

398 F345.5 Added
FA323.4 Revised
FU315 Added

400–408 Appendix H Revised in its entirety

409–418 Appendix J Revised

423 Notes for Appendix K Table General Note (a), Note (7), and Note (12) revised

424, 426, 428, 430, 432, 434 Table K-1 Third column heading revised and all S-Nos. replaced by P-Nos.

440 Fig. M300 Columns 4 and 5 revised

441 Appendix N Added

459 V304 Values of W for girth weld corrected by errata to read 0.80 or 0.77 in six places and used to correct values for S_{11}/W, S_{12}/W, and S_{13}/W to read 3.75, 3.90, and 4.81 in equations for S_1, S_2, and S_3, respectively

NOTES:
(1) The interpretations to ASME B31.3 issued between April 23, 2010 and September 27, 2011 follow the last page of this edition as a separate supplement, Interpretations Volume 23.
(2) After the interpretations, a separate supplement containing Cases 180, 181, and 185 follows.
300 GENERAL STATEMENTS

(a) **Identification.** This Process Piping Code is a Section of the American Society of Mechanical Engineers Code for Pressure Piping, ASME B31, an American National Standard. It is published as a separate document for convenience of Code users.

(b) **Responsibilities**

1. **Owner.** The owner of a piping installation shall have overall responsibility for compliance with this Code, and for establishing the requirements for design, construction, examination, inspection, and testing that will govern the entire fluid handling or process installation of which the piping is a part. The owner is also responsible for designating piping in Category D, Category M, High Pressure, and High Purity Fluid Services, and for determining if a specific Quality System is to be employed. [See paras. 300(d)(4) through (7) and Appendix Q.]

2. **Designer.** The designer is responsible to the owner for assurance that the engineering design of piping complies with the requirements of this Code and with any additional requirements established by the owner.

3. **Manufacturer, Fabricator, and Erector.** The manufacturer, fabricator, and erector of piping are responsible for providing materials, components, and workmanship in compliance with the requirements of this Code and of the engineering design.

4. **Owner’s Inspector.** The owner’s Inspector (see para. 340) is responsible to the owner for ensuring that the requirements of this Code for inspection, examination, and testing are met. If a Quality System is specified by the owner to be employed, the owner’s Inspector is responsible for verifying that it is implemented.

(c) **Intent of the Code**

1. It is the intent of this Code to set forth engineering requirements deemed necessary for safe design and construction of piping installations.

2. This Code is not intended to apply to the operation, examination, inspection, testing, maintenance, or repair of piping that has been placed in service. The provisions of this Code may optionally be applied for those purposes, although other considerations may also be necessary.

3. Engineering requirements of this Code, while considered necessary and adequate for safe design, generally employ a simplified approach to the subject. A designer capable of applying a more rigorous analysis shall have the latitude to do so; however, the approach must be documented in the engineering design and its validity accepted by the owner. The approach used shall provide details of design, construction, examination, inspection, and testing for the design conditions of para. 301, with calculations consistent with the design criteria of this Code.

4. Piping elements should, insofar as practicable, conform to the specifications and standards listed in this Code. Piping elements neither specifically approved nor specifically prohibited by this Code may be used provided they are qualified for use as set forth in applicable Chapters of this Code.

5. The engineering design shall specify any unusual requirements for a particular service. Where service requirements necessitate measures beyond those required by this Code, such measures shall be specified by the engineering design. Where so specified, the Code requires that they be accomplished.

6. Compatibility of materials with the service and hazards from instability of contained fluids are not within the scope of this Code. See para. F323.

(d) **Determining Code Requirements**

1. Code requirements for design and construction include fluid service requirements, which affect selection and application of materials, components, and joints. Fluid service requirements include prohibitions, limitations, and conditions, such as temperature limits or a requirement for safeguarding (see Appendix G). Code requirements for a piping system are the most restrictive of those that apply to any of its elements.

2. For metallic piping not designated by the owner as Category M, High Pressure, or High Purity Fluid Service (see para. 300.2 and Appendix M), Code requirements are found in Chapters I through VI (the base Code) and fluid service requirements are found in