The next edition of this Code is scheduled for publication in 2016. This Code will become effective 6 months after the Date of Issuance.

ASME issues written replies to inquiries concerning interpretations of technical aspects of this Code. Interpretations, Code Cases, and errata are published on the ASME Web site under the Committee Pages at http://cstools.asme.org/ as they are issued. Interpretations and Code Cases are also included with each edition.

Errata to codes and standards may be posted on the ASME Web site under the Committee Pages to provide corrections to incorrectly published items, or to correct typographical or grammatical errors in codes and standards. Such errata shall be used on the date posted.

The Committee Pages can be found at http://cstools.asme.org/. There is an option available to automatically receive an e-mail notification when errata are posted to a particular code or standard. This option can be found on the appropriate Committee Page after selecting “Errata” in the “Publication Information” section.

ASME is the registered trademark of The American Society of Mechanical Engineers.

This international code or standard was developed under procedures accredited as meeting the criteria for American National Standards and it is an American National Standard. The Standards Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed code or standard was made available for public review and comment that provides an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large.

ASME does not “approve,” “rate,” or “endorse” any item, construction, proprietary device, or activity. ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent, nor assumes any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard.

ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures and policies, which precludes the issuance of interpretations by individuals.

No part of this document may be reproduced in any form,
in an electronic retrieval system or otherwise,
without the prior written permission of the publisher.

The American Society of Mechanical Engineers
Two Park Avenue, New York, NY 10016-5990

Copyright © 2014 by
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
All rights reserved
Printed in U.S.A.
CONTENTS

Foreword .. viii
Committee Roster ... x
Introduction ... xiv
Summary of Changes ... xvi

General Provisions and Definitions .. 1

801 General ... 1
802 Scope and Intent ... 1
803 Piping Systems Definitions .. 2
804 Piping Systems Component Definitions 4
805 Design, Fabrication, Operation, and Testing Terms and
 Definitions ... 6
806 Quality Assurance .. 12
807 Training and Qualification of Personnel 12

Chapter I Materials and Equipment .. 14

810 Materials and Equipment .. 14
811 Qualification of Materials and Equipment 14
812 Materials for Use in Low-Temperature Applications 15
813 Marking .. 15
814 Material Specifications ... 15
815 Equipment Specifications .. 16
816 Transportation of Line Pipe .. 16
817 Conditions for the Reuse of Pipe .. 16

Table 817.1.3-1 Tensile Testing .. 17

Chapter II Welding ... 19

820 Welding .. 19
821 General .. 19
822 Preparation for Welding ... 19
823 Qualification of Procedures and Welders 19
824 Preheating ... 20
825 Stress Relieving ... 20
826 Weld Inspection Requirements ... 21
827 Repair or Removal of Defective Welds in Piping Intended
 to Operate at Hoop Stress Levels of 20% or More of
 the Specified Minimum Yield Strength 22

Chapter III Piping System Components and Fabrication Details 23

830 Piping System Components and Fabrication Details 23
831 Piping System Components .. 23
832 Expansion and Flexibility ... 30
833 Design for Longitudinal Stress ... 31
834 Supports and Anchorage for Exposed Piping 33
835 Anchorage for Buried Piping .. 34

Tables

831.4.2-1 Reinforcement of Welded Branch Connections, Special
 Requirements ... 28
832.2-1 Thermal Expansion or Contraction of Piping
 Materials ... 30
Chapter IV

Design, Installation, and Testing .. 35

Steel ... 35

840 Design, Installation, and Testing .. 35

Steel Pipe .. 37

841 Other Materials ... 51

842 Compressor Stations .. 59

843 Pipe-Type and Bottle-Type Holders 62

844 Control and Limiting of Gas Pressure 63

845 Valves ... 68

846 Vaults .. 69

847 Customers’ Meters and Regulators 70

849 Gas Service Lines .. 71

Tables

841.1.6-1 Basic Design Factor, \(F \) ... 39

841.1.6-2 Design Factors for Steel Pipe Construction 40

841.1.7-1 Longitudinal Joint Factor, \(E \) 41

841.1.8-1 Temperature Derating Factor, \(T \), for Steel Pipe ... 41

841.1.11-1 Pipeline Cover Requirements 43

841.2.3-1 Test Requirements for Steel Pipelines and Mainst to
Operate at Hoop Stresses of 30% or More of the
Specified Minimum Yield Strength of the Pipe 49

841.3.3-1 Maximum Hoop Stress Permissible During an Air or Gas
Test .. 50

842.1.1-1 Standard Thickness Selection Table for Ductile
Iron Pipe .. 52

842.2.2-1 Wall Thickness and Standard Dimension Ratio for
Thermoplastic Pipe .. 54

842.2.3-1 Diameter and Wall Thickness for Reinforced
Thermosetting Plastic Pipe ... 54

842.2.9-1 Nominal Values for Coefficients of Thermal Expansion
of Thermoplastic Pipe Materials .. 56

844.3-1 Design Factors, \(F \) ... 62

844.3-2 Minimum Clearance Between Containers and Fenced
Boundaries .. 62

845.2.2-1 Maximum Allowable Operating Pressure for Steel or
Plastic Pipelines or Mains .. 64

845.2.3-1 Maximum Allowable Operating Pressure for Pipelines
Operating at 100 psig (690 kPa) or More 64

845.2.3-2 Maximum Allowable Operating Pressure for Pipelines
Operating at Less Than 100 psig (690 kPa) 64

Chapter V

Operating and Maintenance Procedures 75

850 Operating and Maintenance Procedures Affecting the
Safety of Gas Transmission and Distribution
Facilities .. 75

851 Pipeline Maintenance ... 77

852 Distribution Piping Maintenance 83

853 Miscellaneous Facilities Maintenance 86

854 Location Class and Changes in Number of Buildings
Intended for Human Occupancy ... 89

855 Pipeline Service Conversions .. 91

856 Odorization ... 91

857 Uprating ... 92
Table
A842.2.2-1 Design Factors for Offshore Pipelines, Platform Piping, and Pipeline Risers 109

Chapter IX Sour Gas Service 118
B800 Sour Gas Service 118
B801 General 118
B802 Scope and Intent 118
B803 Sour Gas Terms and Definitions 118
B813 Marking 119
B814 Material Specifications 119
B820 Welding Sour Gas Pipelines 119
B821 General 119
B822 Preparation for Welding 119
B823 Qualification of Procedures and Welders 119
B824 Preheating 119
B825 Stress Relieving 120
B826 Welding and Inspection Tests 120
B830 Piping System Components and Fabrication Details 120
B831 Piping System Components 120
B840 Design, Installation, and Testing 120
B841 Steel Pipe 120
B842 Other Materials 121
B843 Compressor Stations 121
B844 Pipe-Type and Bottle-Type Holders 121
B850 Additional Operating and Maintenance Considerations Affecting the Safety of Sour Gas Pipelines 121
B851 Pipeline Maintenance 122
B854 Location Class and Changes in Number of Buildings Intended for Human Occupancy 122
B860 Corrosion Control of Sour Gas Pipelines 122
B861 External Corrosion Control for Steel Pipelines 124
B864 Internal Corrosion Control 124
B867 Stress Corrosion and Other Phenomena 124

Tables
B850.1-1 100-ppm ROE 123
B850.1-2 500-ppm ROE 123
B850.1-3 Metric Example for 100-ppm ROE 123
B850.1-4 Metric Example for 500-ppm ROE 123

Appendices
Mandatory Appendix A References 125
Mandatory Appendix B Numbers and Subjects of Standards and Specifications That Appear in Mandatory Appendix A 130
Nonmandatory Appendix C Publications That Do Not Appear in the Code or Mandatory Appendix A 131
Mandatory Appendix D Specified Minimum Yield Strength for Steel Pipe Commonly Used in Piping Systems 134
Mandatory Appendix E Flexibility and Stress Intensification Factors 137
Mandatory Appendix F Extruded Headers and Welded Branch Connections 143
Mandatory Appendix G Testing of Welders Limited to Work on Lines Operating at Hoop Stresses of Less Than 20% of the Specified Minimum Yield Strength 151
Mandatory Appendix H Flattening Test for Pipe 152
Mandatory Appendix I End Preparations for Buttwelding 153
Nonmandatory Appendix J Commonly Used Conversion Factors 162
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Criteria for Cathodic Protection</td>
<td>166</td>
</tr>
<tr>
<td>L</td>
<td>Determination of Remaining Strength of Corroded</td>
<td>168</td>
</tr>
<tr>
<td>L</td>
<td>Pipe</td>
<td>168</td>
</tr>
<tr>
<td>M</td>
<td>Gas Leakage Control Criteria</td>
<td>169</td>
</tr>
<tr>
<td>N</td>
<td>Recommended Practice for Hydrostatic Testing of</td>
<td>176</td>
</tr>
<tr>
<td>N</td>
<td>Pipelines in Place</td>
<td>176</td>
</tr>
<tr>
<td>O</td>
<td>Preparation of Technical Inquiries</td>
<td>178</td>
</tr>
<tr>
<td>P</td>
<td>Nomenclature for Figures</td>
<td>179</td>
</tr>
<tr>
<td>Q</td>
<td>Scope Diagrams</td>
<td>180</td>
</tr>
<tr>
<td>R</td>
<td>Estimating Strain in Dents</td>
<td>183</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>185</td>
</tr>
</tbody>
</table>
The need for a national code for pressure piping became increasingly evident from 1915 to 1925. To meet this need, the American Engineering Standards Committee (later changed to the American Standards Association, now the American National Standards Institute) initiated Project B31 in March 1926 at the request of the American Society of Mechanical Engineers and with that Society as sole sponsor. After several years of work by Sectional Committee B31 and its subcommittees, a first Edition was published in 1935 as an American Tentative Standard Code for Pressure Piping.

A revision of the original tentative standard began in 1937. Several more years of effort were given to securing uniformity among sections, eliminating divergent requirements and discrepancies, keeping the Code abreast of current developments in welding technique, calculating stress computations, and including reference to new dimensional and material standards. During this period, a new section on refrigeration piping was prepared in cooperation with the American Society of Refrigeration Engineers and complemented the American Standard Code for Mechanical Refrigeration. This work culminated in the 1942 American Standard Code for Pressure Piping.

Supplements 1 and 2 of the 1942 Code, which appeared in 1944 and 1947, respectively, introduced new dimensional and material standards, a new formula for pipe wall thickness, and more comprehensive requirements for instrument and control piping. Shortly after the 1942 Code was issued, procedures were established for handling inquiries requiring explanation or interpretation of Code requirements and for publishing such inquiries and answers in Mechanical Engineering for the information of all concerned.

By 1948, continuing increases in the severity of service conditions combined with the development of new materials and designs to meet these higher requirements warranted more extensive changes in the Code than could be provided from supplements alone. The decision was reached by the American Standards Association and the sponsor to reorganize the sectional committee and its several subcommittees and to invite the various interested bodies to reaffirm their representatives or to designate new ones.

Because of the wide field involved, between 30 and 40 different engineering societies, government bureaus, trade associations, institutes, and similar organizations had one or more representatives on the sectional committee, plus a few “members at large” to represent general interests. Code activities were subdivided according to the scope of the several sections. General direction of Code activities rested with the Standards Committee officers and an executive committee, membership of which consisted principally of Standards Committee officers and section chairmen.

Following its reorganization in 1948, Standards Committee B31 made an intensive review of the 1942 Code that resulted in

(a) a general revision and extension of requirements to agree with present-day practice
(b) the revision of references to existing dimensional standards and material specifications and the addition of references to the new ones
(c) the clarification of ambiguous or conflicting requirements

A revision was presented for letter ballot vote of Standards Committee B31. Following approval by this body, the project was approved by the sponsor organization and by the American Standards Association. It was finally designated as an American Standard in February 1951, with the designation B31.1-1951.

Standards Committee B31 at its annual meeting of November 29, 1951, authorized the separate publication of a section of the Code for Pressure Piping addressing gas transmission and distribution piping systems, to be complete with the applicable parts of Section 2, Gas and Air Piping Systems; Section 6, Fabrication Details; and Section 7, Materials — Their Specifications and Identification. The purpose was to provide an integrated document for gas transmission and distribution piping that would not require cross-referencing to other sections of the Code.

The first Edition of this integrated document, known as American Standard Code for Pressure Piping, Section 8, Gas Transmission and Distribution Piping Systems, was published in 1952 and
consisted almost entirely of material taken from Sections 2, 6, and 7 of the 1951 Edition of the Pressure Piping Code.

A new section committee was organized in 1952 to update Section 8 as necessary to address modern materials and methods of construction and operation.

In December 1978, the American National Standards Committee B31 was reorganized as the ASME Code for Pressure Piping, B31 Committee. The code designation was also changed to ANSI/ASME B31.

The 2003 Edition of the Code was a compilation of the 1999 Edition and revisions that occurred following the issuance of the 1999 Edition.

The 2010 Edition of the Code was a compilation of the 2007 Edition and revisions that occurred following the issuance of the 2007 Edition.

The 2012 Edition of the Code was a compilation of the 2010 Edition and revisions that occurred following the issuance of the 2010 Edition.

The 2014 Edition of the Code is a compilation of the 2012 Edition and revisions that have occurred since the issuance of the 2012 Edition. This Edition was approved by the American National Standards Institute on August 15, 2014.
ASME B31 COMMITTEE
Code for Pressure Piping

(The following is the roster of the Committee at the time of approval of this Code.)

STANDARDS COMMITTEE OFFICERS

J. E. Meyer, Chair
J. W. Frey, Vice Chair
N. Lobo, Secretary

STANDARDS COMMITTEE PERSONNEL

R. J. Appleby, ExxonMobil Development Co.
C. Becht IV, Becht Engineering Co.
A. E. Beyer, Fluor Enterprises, Inc.
K. C. Bodenhamer, Willbros Professional Services, Engineering
R. Bojarczuk, ExxonMobil Research and Engineering Co.
C. J. Campbell, Air Liquide
J. S. Chin, TransCanada Pipelines U.S.
D. D. Christian, Victaulic
R. P. Deubler, Fronek Power Systems, LLC
C. H. Eskridge, Jr., Jacobs Engineering
D. J. Fetzner, BP Exploration (Alaska), Inc.
P. D. Flenner, Flenner Engineering Services
J. W. Frey, Stress Engineering Services, Inc.
D. R. Frikken, Becht Engineering Co.
R. A. Grichuk, Fluor Enterprises, Inc.
R. W. Haupt, Pressure Piping Engineering Associates, Inc.
B. P. Holbrook, Babcock Power, Inc.
G. A. Jolly, Flowserve/Gestra USA
N. Lobo, The American Society of Mechanical Engineers
W. J. Mauro, American Electric Power
T. Monday, Team Industries, Inc.
M. L. Nayyar, NICE
G. R. Petru, Enterprise Products Co.
E. H. Rinaca, Dominion Resources, Inc.
M. J. Rosenfeld, Kiefner/Applus – RTD
R. J. Silvia, Process Engineers and Constructors, Inc.
W. J. Sperko, Sperko Engineering Services, Inc.
J. Swezy, Jr., Boiler Code Tech, LLC
F. W. Tatar, FM Global
K. A. Vlaminot, Black & Veatch
G. Antaki, Ex-Officio Member, Becht Engineering Co.
L. E. Hayden, Jr., Ex-Officio Member, Consultant
A. J. Livingston, Ex-Officio Member, Kinder Morgan

B31.8 EXECUTIVE COMMITTEE

A. P. Maslowski, Secretary, The American Society of Mechanical Engineers
D. D. Anderson, Columbia Pipeline Group
R. J. Appleby, ExxonMobil Development Co.
K. B. Kaplan, KBR
K. G. Leewis, Dynamic Risk Assessment Systems, Inc.
M. J. Rosenfeld, Kiefner/Applus – RTD
J. Zhou, TransCanada Pipelines Ltd.
E. K. Newton, Ex-Officio Member, Southern California Gas Co.
B. J. Powell, Ex-Officio Member, NiSource, Inc.
W. J. Walsh, Ex-Officio Member, AcelorMittal Global R&D
B31.8 GAS TRANSMISSION AND DISTRIBUTION PIPING SYSTEMS SECTION COMMITTEE

R. J. Appleby, Chair, ExxonMobil Development Co.
D. D. Anderson, Vice Chair, Columbia Pipeline Group
A. P. Maslowski, Secretary, The American Society of Mechanical Engineers
R. C. Becken, Energy Experts International
C. A. Bullock, Centerpoint Energy
J. S. Chin, TransCanada Pipelines U.S.
S. C. Christensen, Consultant
A. M. Clarke, Spectra Energy Transmission
P. M. Dickinson, Resolute Energy Corp.
J. W. Fee, Consultant
D. J. Fetzner, BP Exploration (Alaska), Inc.
M. W. Gragg, ExxonMobil Development Co.
M. E. Hovis, Energy Transfer
M. D. Huston, ONEOK Partners, LP
M. Israni, U.S. DOT – PHMSA
D. L. Johnson, Energy Transfer
K. B. Kaplan, KBR
R. W. Kivela, Spectra Energy
M. P. Lamontagne, Lamontagne Pipeline Assessment Corp.
K. G. Leewis, Dynamic Risk Assessment Systems, Inc.

R. D. Lewis, Rosen USA
W. J. Manegold, Pacific Gas and Electric Co.
M. J. Mechlowicz, Southern California Gas Co.
C. J. Miller, Fluor Enterprises, Inc.
D. K. Moore, TransCanada Pipelines U.S.
E. K. Newton, Southern California Gas Co.
G. E. Ortega, Conoco Phillips
B. J. Powell, NiSource, Inc.
M. J. Rosenfeld, Kiefner/Applus – RTD
R. A. Schmidt, Canadoil
P. L. Vaughan, ONEOK Partners, LP
F. R. Volgstad, Volgstad and Associates, Inc.
W. J. Walsh, ArcelorMittal Global R&D
D. H. Whitley, EDG, Inc.
D. W. Wright, Wright Tech Services, LLC
M. R. Zerella, National Grid
J. Zhou, TransCanada Pipelines Ltd.
J. S. Zurcher, Process Performance Improvement Consultants
S. C. Gupta, Delegate, Bharat Petroleum Corp. Ltd.
A. Soni, Delegate, Engineers India Ltd.
R. W. Gailing, Contributing Member, Southern California Gas Co.
J. K. Wilson, Contributing Member, Williams

B31.8 SUBGROUP ON DESIGN, MATERIALS, AND CONSTRUCTION

M. J. Rosenfeld, Chair, Kiefner/Applus – RTD
R. J. Appleby, ExxonMobil Development Co.
R. C. Becken, Energy Experts International
B. W. Bingham, T. D. Williamson, Inc.
J. S. Chin, TransCanada Pipelines U.S.
A. M. Clarke, Spectra Energy Transmission
P. M. Dickinson, Resolute Energy Corp.
J. W. Fee, Consultant
D. J. Fetzner, BP Exploration (Alaska), Inc.
S. A. Frehse, Southwest Gas Corp.
R. W. Gailing, Southern California Gas Co.
D. Haim, Bechtel Corp. – Oil, Gas and Chemicals
R. D. Huriaux, Consultant
M. D. Huston, ONEOK Partners, LP
K. B. Kaplan, KBR

M. J. Mechlowicz, Southern California Gas Co.
C. J. Miller, Fluor Enterprises, Inc.
E. K. Newton, Southern California Gas Co.
M. Nguyen, Lockwood International
G. E. Ortega, Conoco Phillips
W. L. Raymundo, Pacific Gas and Electric Co.
E. J. Robichaux, Atmos Energy
R. A. Schmidt, Canadoil
J. Sieve, U.S. DOT – PHMSA-OPS
H. Tiwari, FMC Technologies, Inc.
P. L. Vaughan, ONEOK Partners, LP
F. R. Volgstad, Volgstad and Associates, Inc.
W. J. Walsh, ArcelorMittal Global R&D
D. H. Whitley, EDG, Inc.
J. Zhou, TransCanada Pipelines Ltd.
M. A. Boring, Contributing Member, Kiefner and Associates, Inc.

B31.8 SUBGROUP ON DISTRIBUTION

E. K. Newton, Chair, Southern California Gas Co.
B. J. Powell, Vice Chair, NiSource, Inc.
J. Faruq, American Gas Association
S. A. Frehse, Southwest Gas Corp.
J. M. Groot, Southern California Gas Co.
W. J. Manegold, Pacific Gas and Electric Co.

M. J. Mechlowicz, Southern California Gas Co.
E. J. Robichaux, Atmos Energy
V. Romero, Southern California Gas Co.
J. Sieve, U.S. DOT – PHMSA-OPS
F. R. Volgstad, Volgstad and Associates, Inc.
M. R. Zerella, National Grid
B31.8 SUBGROUP ON EDITORIAL REVIEW

K. G. Leewis, Chair, Dynamic Risk Assessment Systems, Inc.
R. C. Becken, Energy Experts International
J. P. Brandt, BP Exploration (Alaska), Inc.
R. W. Gailing, Southern California Gas Co.

D. Haim, Bechtel Corp. – Oil, Gas and Chemicals
K. B. Kaplan, KBR
R. D. Lewis, Rosen USA
D. K. Moore, TransCanada Pipelines U.S.

B31.8 SUBGROUP ON OFFSHORE PIPELINES

K. B. Kaplan, Chair, KBR
R. J. Appleby, ExxonMobil Development Co.
K. K. Emeaba, National Transportation Safety Board

M. W. Gragg, ExxonMobil Development Co.
J. Sieve, U.S. DOT – PHMSA-OPS
H. Tiwari, FMC Technologies, Inc.

B31.8 SUBGROUP ON OPERATION AND MAINTENANCE

D. D. Anderson, Chair, Columbia Pipeline Group
M. E. Hovis, Vice Chair, Energy Transfer
R. P. Barry, ENSTAR Natural Gas Co.
A. Bhatia, Alliance Pipeline Ltd.
J. P. Brandt, BP Exploration (Alaska), Inc.
C. A. Bullock, Centerpoint Energy
K. K. Emeaba, National Transportation Safety Board
J. D. Gilliam, U.S. DOT – PHMSA
J. M. Groot, Southern California Gas Co.
J. Hudson, EN Engineering
L. J. Huys, University of Calgary
M. Israni, Energy Transfer
D. L. Johnson, Energy Transfer
R. W. Kivela, Spectra Energy

M. P. Lamontagne, Lamontagne Pipeline Assessment Corp.
K. G. Leewis, Dynamic Risk Assessment Systems, Inc.
R. D. Lewis, Rosen USA
C. A. Mancuso, Jacobs
W. J. Manegold, Pacific Gas and Electric Co.
D. K. Moore, TransCanada Pipelines U.S.
M. Nguyen, Lockwood International
B. J. Powell, NiSource, Inc.
M. T. Reed, Alliance Pipeline Ltd.
D. R. Thornton, The Equity Engineering Group
J. K. Wilson, Williams
D. W. Wright, Wright Tech Services, LLC
M. R. Zerella, National Grid
J. S. Zurcher, Process Performance Improvement Consultants
D. E. Adler, Contributing Member, Columbia Pipeline Group

B31.8 GAS TRANSMISSION AND DISTRIBUTION PIPING SYSTEMS, INDIA IWG

N. B. Babu, Chair, Gujarat State Petronet Ltd.
A. Karnatak, Vice Chair, Gail India Ltd.
P. V. Gopalani, L&T Valdel Engineering Ltd.
R. D. Goyal, Gail India Ltd.
M. Jain, Gail India Ltd.
P. Kumar, Gail India Ltd.
A. Modi, Gail India Ltd.
D. S. Nanaware, Indian Oil Corp. Ltd.
Y. S. Navathe, Adani Energy Ltd.

S. Prakask, ILFS Engineering and Construction Co.
V. T. Randeria, Gail Gas Co. Ltd.
S. Sahani, TDW India Ltd.
K. K. Saini, Reliance Gas Transportation Infrastructure Ltd.
R. B. Singh, Adani Energy Ltd.
J. Sivaraman, Reliance Gas Transportation Infrastructure Ltd.
I. Somasundaram, Gail India Ltd.
A. Soni, Engineers India Ltd.
M. Sharma, Contributing Member, ASME India PVT. Ltd.

B31.8 INTERNATIONAL REVIEW GROUP

R. J. Appleby, Chair, ExxonMobil Development Co.
H. M. Al-Muslim, Saudi Aramco

Q. Feng, PetroChina Pipeline Co.
W. Feng, PetroChina Pipeline Co.

B31 CONFERENCE GROUP

T. A. Bell, Bonneville Power Administration
R. A. Coomes, State of Kentucky, Department of Housing/Boiler Section
D. H. Hanrath, Consultant
C. J. Harvey, Alabama Public Service Commission
D. T. Jagger, Ohio Department of Commerce
K. T. Lau, Alberta Boilers Safety Association
R. G. Marini, New Hampshire Public Utilities Commission
I. W. Mault, Manitoba Department of Labour
A. W. Meiring, Fire and Building Safety Division/Indiana
R. F. Mullaney, British Columbia Boiler and Pressure Vessel Safety Branch

P. Sher, State of Connecticut
M. E. Skarda, Arkansas Department of Labor
D. A. Starr, Nebraska Department of Labor
D. J. Sturmsma, Iowa Utilities Board
R. P. Sullivan, The National Board of Boiler and Pressure Vessel Inspectors
J. E. Troupman, Division of Labor/State of Colorado Boiler Inspections
W. A. West, Lighthouse Assistance, Inc.
T. F. Wickham, Rhode Island Department of Labor
B31 EXECUTIVE COMMITTEE

J. E. Meyer, Chair, Louis Perry and Associates, Inc.
N. Lobo, Secretary, The American Society of Mechanical Engineers
G. A. Antaki, Becht Engineering Co.
R. J. Appleby, ExxonMobil Development Co.
D. D. Christian, Victaulic
J. W. Frey, Stress Engineering Services, Inc.
D. R. Frikken, Becht Engineering Co.
R. A. Grichuk, Fluor Enterprises, Inc.
L. E. Hayden, Jr., Consultant
G. A. Jolly, Flowserve/Gestra USA
A. J. Livingston, Kinder Morgan
M. L. Nayyar, NICE
G. R. Petru, Enterprise Products Co.
R. A. Appleton, Contributing Member, Refrigeration Systems Co.

B31 FABRICATION AND EXAMINATION COMMITTEE

J. Swezy, Jr., Chair, Boiler Code Tech, LLC
F. Huang, Secretary, The American Society of Mechanical Engineers
R. D. Campbell, Bechtel Corp.
D. Couch, Electric Power Research Institute
R. J. Ferguson, Metallurgist
P. D. Flenner, Flenner Engineering Services
S. Gingrich, USR Corp.
J. Hainsworth, Consultant
A. D. Nalbandian, Thielsch Engineering, Inc.
R. J. Silvia, Process Engineers and Constructors, Inc.
W. J. Sperko, Sperko Engineering Services, Inc.
P. L. Vaughan, ONEOK Partners, LP
K. Wu, Stellar Energy Systems

B31 MATERIALS TECHNICAL COMMITTEE

R. A. Grichuk, Chair, Fluor Enterprises, Inc.
N. Lobo, Secretary, The American Society of Mechanical Engineers
W. P. Collins, WPC Solutions, LLC
R. P. Deubler, Fronek Power Systems, LLC
C. H. Eskridge, Jr., Jacobs Engineering
G. A. Jolly, Flowserve/Gestra USA
C. J. Melo, S&B Engineers and Constructors, Ltd.
M. L. Nayyar, NICE
M. B. Pickell, Willbros Engineers, Inc.
D. W. Rahoi, CCM 2000
R. A. Schmidt, Canadcoil
H. R. Simpson, Stantec
J. L. Smith, Jacobs Engineering Group
Z. Djilali, Contributing Member, Sonatrach

B31 MECHANICAL DESIGN TECHNICAL COMMITTEE

G. A. Antaki, Chair, Becht Engineering Co.
J. C. Minichielo, Vice Chair, Bechtel National, Inc.
R. Lucas, Secretary, The American Society of Mechanical Engineers
D. Arnett, Chevron ETC
C. Becht IV, Becht Engineering Co.
R. Betha, Huntington Ingalls Industries, Newport News
Shipbuilding
J. P. Breen, Becht Engineering Co.
P. Cakir-Kavcar, Bechtel Corp. – Oil, Gas and Chemicals
N. F. Consumo, Sr., Consultant
J. P. Ellenberger, Consultant
D. J. Fetzner, BP Exploration (Alaska), Inc.
D. A. Fraser, NASA Ames Research Center
J. A. Graziano, Consultant
R. W. Haupt, Pressure Piping Engineering Associates, Inc.
B. P. Holbrook, Babcock Power, Inc.
W. J. Koves, PI Engineering Software, Inc.
R. A. Leishear, Savannah River National Laboratory
G. D. Maysers, Alion Science and Technology
J. F. McCabe, General Dynamics Electric Boat
T. Q. McCawley, TQM Engineering PC
A. Paulin, Paulin Research Group
R. A. Robleto, KBR
M. J. Rosenfeld, Kielner/Appus – RTD
T. Sato, Japan Power Engineering and Inspection Corp.
G. Stevick, Berkeley Engineering and Research, Inc.
H. Kosasayama, Delegate, JGC Corp.
E. C. Rodabaugh, Honorary Member, Consultant

B31 NATIONAL INTEREST REVIEW GROUP

American Pipe Fitting Association — H. Thielsch
American Society of Heating, Refrigerating and Air-Conditioning Engineers — H. R. Kromblum
Chemical Manufacturers Association — D. R. Frikken
Copper Development Association — A. Cohen
Ductile Iron Pipe Research Association — T. F. Stroud
Edison Electric Institute — R. L. Williams
International District Heating Association — G. M. Von Bargen
Manufacturers Standardization Society of the Valve and Fittings Industry — R. A. Schmidt
National Association of Plumbing-Heating-Cooling Contractors — R. E. White
National Certified Pipe Welding Bureau — D. Nikpourfard
National Fire Protection Association — T. C. Lemoff
National Fluid Power Association — H. G. Anderson
Valve Manufacturers Association — R. A. Handschumacher
INTRODUCTION

The ASME Code for Pressure Piping consists of many individually published sections, each an American National Standard. Hereafter, in this Introduction and in the text of this Code Section, B31.8, when the word “Code” is used without specific identification, it means this Code Section.

The Code sets forth engineering requirements deemed necessary for the safe design and construction of pressure piping. Although safety is the basic consideration, this factor alone will not necessarily govern the final specifications of any piping system. The designer is cautioned that the Code is not a design handbook; it does not eliminate the need for the designer or for competent engineering judgment.

To the greatest possible extent, Code requirements for design are stated in terms of basic design principles and formulas. These are supplemented as necessary with specific requirements to ensure uniform application of principles and to guide selection and application of piping elements. The Code prohibits designs and practices known to be unsafe and contains warnings where caution, but not prohibition, is warranted.

This Code Section includes
(a) references to acceptable material specifications and component standards, including dimensional and mechanical property requirements
(b) requirements for designing components and assemblies
(c) requirements and data for evaluating and limiting stresses, reactions, and movements associated with pressure, temperature changes, and other forces
(d) guidance and limitations on selecting and applying materials, components, and joining methods
(e) requirements for fabricating, assembling, and installing piping
(f) requirements for examining, inspecting, and testing piping
(g) procedures for operation and maintenance that are essential to public safety
(h) provisions for protecting pipelines from external and internal corrosion

It is intended that this Edition of Code Section B31.8 not be retroactive. The latest edition issued at least 6 months before the original contract date for the first phase of activity covering a piping system or systems shall be the governing document, unless agreement is specifically made between contracting parties to use another issue, or unless the regulatory body having jurisdiction imposes the use of another issue or different requirements.

Users of this Code are cautioned against making use of revisions without assurance that they are acceptable to any authorities of jurisdiction where the piping is to be installed.

The Code is under the direction of ASME Committee B31, Code for Pressure Piping, which is organized and operates under procedures of The American Society of Mechanical Engineers that have been accredited by the American National Standards Institute. The Committee is a continuing one and keeps all Code Sections current with new developments in materials, construction, and industrial practice.

When no Section of the ASME Code for Pressure Piping specifically covers a piping system, the user has discretion to select any Section determined to be generally applicable; however, it is cautioned that supplementary requirements to the Section chosen may be necessary to provide for a safe piping system for the intended application. Technical limitations of the various Sections, legal requirements, and possible applicability of other Codes or Standards are some of the factors to be considered by the user in determining the applicability of any Section of this Code.

Appendices

This Code contains two kinds of appendices: mandatory and nonmandatory. Mandatory appendices contain materials the user needs to carry out a requirement or recommendation in the main text of the Code. Nonmandatory appendices, which are written in mandatory language, are offered for application at the user’s discretion.

Interpretations and Revisions

The Committee has established an orderly procedure to consider requests for interpretation and revision of Code requirements. To receive consideration, inquiries must be in writing and must give full particulars. (See Nonmandatory Appendix O covering preparation of technical inquiries.)

The approved reply to an inquiry will be sent directly to the inquirer. In addition, the question and reply will be published as part of an Interpretation Supplement to the Code Section, issued with the revisions.

Requests for interpretation and suggestions for revision should be addressed to the Secretary, ASME B31 Committee, The American Society of
Cases

A Case is the prescribed form of reply to an inquiry when study indicates that the Code wording needs clarification or when the reply modifies existing requirements of the Code or grants permission to use new materials or alternative constructions. The Case will be published on the B31.8 Committee Page at http://cstools.asme.org/.

A Case is normally issued for a limited period, after which it may be renewed, incorporated in the Code, or allowed to expire if there is no indication of further need for the requirements covered by the Case. The provisions of a Case, however, may be used after its expiration or withdrawal, provided the Case was effective on the original contract date or was adopted before completion of the work, and the contracting parties agree to its use.

Materials are listed in the Stress Tables only when sufficient usage in piping within the scope of the Code has been shown. Materials may be covered by a Case. Requests for listing shall include evidence of satisfactory usage and specific data to permit establishment of allowable stresses or pressure rating, maximum and minimum temperature limits, and other restrictions. Additional criteria can be found in the guidelines for addition of new materials in the ASME Boiler and Pressure Vessel Code, Section II. (To develop usage and gain experience, unlisted materials may be used in accordance with para. 811.2.2.)

Effective Date

ASME B31.8-2014

SUMMARY OF CHANGES

Following approval by the B31 Committee and ASME, and after public review, ASME B31.8-2014 was approved by the American National Standards Institute on August 15, 2014.

ASME B31.8-2014 consists of editorial changes, revisions, and corrections identified by a margin note, (14), placed next to the affected area.

<table>
<thead>
<tr>
<th>Page</th>
<th>Location</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>801.1</td>
<td>First sentence editorially revised</td>
</tr>
<tr>
<td></td>
<td>802.1</td>
<td>In subpara. (b)(10), reference to ASME B31.11 revised to ASME B31.4</td>
</tr>
<tr>
<td>14</td>
<td>811.1</td>
<td>Subparagraph (b) editorially revised</td>
</tr>
<tr>
<td></td>
<td>811.2.3</td>
<td>Subparagraph (c) editorially revised</td>
</tr>
<tr>
<td>15</td>
<td>814.1.1</td>
<td>Note (1) revised</td>
</tr>
<tr>
<td>16</td>
<td>815</td>
<td>Fourth sentence editorially revised</td>
</tr>
<tr>
<td></td>
<td>816</td>
<td>Second paragraph editorially revised</td>
</tr>
</tbody>
</table>
| 23, 24 | 831.1.1 | (1) References updated
| | | (2) Subparagraph (b) revised |
| | 831.2.1 | References updated |
| 28 | 831.4.2 | Subparagraph (g) revised |
| 32 | 833.4 | (1) In subpara. (a)(1), equation revised
| | | (2) Subparagraph (d) revised |
| 33 | 834.4 | Subparagraph (a) revised |
| 36 | 840.2.2 | Subparagraphs (a)(1) and (a)(2) revised |
| 37, 38 | 841.1.2 | In subparas. (b) and (c), references to API 5L updated |
| 39, 42 | 841.1.9 | (1) In subpara. (a), first sentence revised
<p>| | | (2) In subpara. (k), equations revised |
| 40 | Table 841.1.6-2 | Revised |
| 45, 46 | 841.2.4 | In subpara. (c)(3), second sentence revised |
| 51 | 842.1.1 | In subpara. (d), second sentence revised |
| 53 | 842.2.1 | In definition for S, spelling of “specified” corrected |
| 59 | 843.3.1 | Subparagraph (b) revised |
| 64 | Table 845.2.2-1 | “Pressure for Steel” column revised |
| 66, 67 | 845.2.7 | In subpara. (c)(3), third sentence revised |
| 78 | 851.4 | First paragraph added |</p>
<table>
<thead>
<tr>
<th>Page</th>
<th>Location</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>87</td>
<td>853.3.1</td>
<td>In subpara. (b)(2), first sentence editorially revised</td>
</tr>
<tr>
<td>89</td>
<td>854.2</td>
<td>In subpara. (c), last sentence revised</td>
</tr>
<tr>
<td>103, 104</td>
<td>A802</td>
<td>Editorialy revised</td>
</tr>
<tr>
<td></td>
<td>A803</td>
<td>Definition for steel catenary riser (SCR) added</td>
</tr>
<tr>
<td>106</td>
<td>A831.1.1</td>
<td>References updated</td>
</tr>
<tr>
<td>111</td>
<td>A843.1.5</td>
<td>Added</td>
</tr>
<tr>
<td>113</td>
<td>A847.2</td>
<td>Revised</td>
</tr>
<tr>
<td>118</td>
<td>B802.2</td>
<td>Editorialy revised</td>
</tr>
<tr>
<td>125–129</td>
<td>Mandatory Appendix A</td>
<td>Updated</td>
</tr>
<tr>
<td>131–133</td>
<td>Nonmandatory Appendix C</td>
<td>Updated</td>
</tr>
<tr>
<td>143</td>
<td>F-1</td>
<td>Under definition for r_{co} subparas. (a) and (b) revised</td>
</tr>
<tr>
<td>149</td>
<td>F-2.2.5M</td>
<td>Revised</td>
</tr>
</tbody>
</table>

SPECIAL NOTE:

The interpretations to ASME B31.8 are included in this edition as a separate section for the user's convenience.
801 GENERAL

801.1 Approved Standards and Specifications

Standards and specifications approved for use under this Code and the names and addresses of the sponsoring organizations are shown in Mandatory Appendix A. It is not considered practicable to refer to a specific edition of each of the standards and specifications in the individual Code paragraphs.

801.2 Use of Standards and Specifications

Incorporated by Reference

Some standards and specifications cited in Mandatory Appendix A are supplemented by specific requirements elsewhere in this Code. Users of this Code are advised against attempting direct application of any of these standards without carefully observing the Code’s reference to that standard.

801.3 Standard Dimensions

Adherence to American National Standards Institute (ANSI) dimensions is strongly recommended wherever practicable. Paragraphs or notations specifying these and other dimensional standards in this Code, however, shall not be mandatory, provided that other designs of at least equal strength and tightness, capable of withstanding the same test requirements, are substituted.

801.4 SI (Metric) Conversion

For factors used in converting U.S. Customary units to SI units, see Nonmandatory Appendix J.

802 SCOPE AND INTENT

802.1 Scope

(a) This Code covers the design, fabrication, installation, inspection, and testing of pipeline facilities used for the transportation of gas. This Code also covers safety aspects of the operation and maintenance of those facilities. (See Mandatory Appendix Q for scope diagrams.)

This Code is concerned only with certain safety aspects of liquefied petroleum gases when they are vaporized and used as gaseous fuels. All of the requirements of NFPA 58 and NFPA 59 and of this Code concerning design, construction, and operation and maintenance of piping facilities shall apply to piping systems handling butane, propane, or mixtures of these gases.

(b) This Code does not apply to

(1) design and manufacture of pressure vessels covered by the BPV Code

(2) piping with metal temperatures above 450°F (232°C) or below −20°F (−29°C) (For low-temperature considerations, see para. 812.)

(3) piping beyond the outlet of the customer’s meter set assembly (Refer to ANSI Z223.1/NFPA 54.)

(4) piping in oil refineries or natural gas extraction plants, gas treating plant piping other than the main gas stream piping in dehydration, and all other processing plants installed as part of a gas transmission system, gas manufacturing plants, industrial plants, or mines (See other applicable sections of the ASME Code for Pressure Piping, B31.)

(5) vent piping to operate at substantially atmospheric pressures for waste gases of any kind

(6) wellhead assemblies, including control valves, flow lines between wellhead and trap or separator, offshore platform production facility piping, or casing and tubing in gas or oil wells (For offshore platform production facility piping, see API RP 14E.)

(7) the design and manufacture of proprietary items of equipment, apparatus, or instruments

(8) the design and manufacture of heat exchangers (Refer to appropriate TEMA standard.)

(9) liquid petroleum transportation piping systems (Refer to ASME B31.4.)

(10) liquid slurry transportation piping systems (Refer to ASME B31.4.)

(11) carbon dioxide transportation piping systems

1 BPV Code references here and elsewhere in this Code are to the ASME Boiler and Pressure Vessel Code.

2 Tubular Exchanger Manufacturers Association, 25 North Broadway, Tarrytown, NY 10591.