Metallurgical & Materials PE Exam

NCEES Principles and Practice of Engineering Examination
Metallurgical and Materials Engineering Exam Specifications

As of April 2012

A few general points noted about the exam, which are followed by the detailed specifications.  

•    The exam is an 8-hour open-book exam. It contains 40 multiple-choice questions in the 4-hour morning session, and 40 multiple-choice questions in the 4-hour afternoon session. Examinee works all questions.
•    The exam uses both the International System of units (SI) and the US Customary System (USCS).
•    The exam is developed with questions that will require a variety of approaches and methodologies, including design, analysis, and application.
•    The knowledge areas specified as examples of kinds of knowledge are not exclusive or exhaustive categories.
•    The exam will include questions that are independent of the type of material and questions that are related to specific materials. The materials-specific questions will be distributed in the following three groups:
a.    Approximately 50% of the material-specific questions address ferrous materials, defined as stainless steel, cast iron, carbon steel, and alloyed steel.
b.     Approximately 30% of the material-specific questions address light and nonferrous materials, defined as titanium and titanium alloys, aluminum and aluminum alloys, copper and copper alloys, intermetallic alloys, precious metals, refractory alloys, superalloys, and other nonferrous metals.
c.     The remaining 20% of the material-specific questions address ceramics,     polymers, composites, and electronic materials, including glasses, functional ceramics, engineering ceramics, elastomers, thermoset, thermoplastic, composites, silicon, and other semiconductor materials.
I. Foundation Topics 33%
A. Statistics 5%
1.    Confidence intervals
2.    Data analysis
3.    Application to quality control
4.    Process quality control
B.    Physical/engineering sciences 11%
1.    Physical chemistry
2.    Phase equilibria
3.    Thermodynamics
4.    Heat transfer
5.    Reaction kinetics
C.    Mechanics of materials 5%
1. Statics
2. Dynamics
D. Process fundamentals 12%
1.    Mass balances
2.    Heat balances
3.    Thermodynamics
4.    Kinetics
5.    Heat transfer
6.    Electrochemistry
II. Structure and Properties 30%
A. Structure/phase/transformations 10%
1.    Crystal structure
2.    Phase diagrams
3.    Solidification
4.    Phase transformations
5.    Diffusion
6.    Chemistry
B.    Mechanical properties of metals and materials 10%
1.    States of stress
2.    Strengthening mechanisms
3.    Cold work and annealing
4.    Elastic/plastic deformation
5.    Fracture mechanics
6.    Fatigue analysis and life prediction
7.    High-temperature behavior (creep and stress-rupture)
8.    Mechanical behavior of composites
C.    Applications and specifications of metal and materials selection 10%
1.    Mechanical performance
2.    Chemical resistance
3.    Thermal stability
4.    Corrosion/environmental compatibility
5.    Temperature/radiation or other environmental compatibilities
III. Processing 21%
A.    Heat treatments 7%
1.    Ferrous alloys (e.g., hardenability, hardening, tempering)
2.    Nonferrous alloys (e.g., annealing, precipitation hardening, 
age hardening)
3.    Polymers, ceramics and glasses
B.    Surface modification 5%
1.    Diffusion treatment (e.g., carburization)
2.    Coatings (e.g., thermal sprays, paints, vapor)
3.    Thermal treatments (e.g., flame or induction hardening)
C.    Forming and fabrication 9%
1.    Joining (e.g., welding, brazing, and soldering)
2.    Casting (e.g., sand, die, investment)
3.    Bulk forming (e.g., rolling, forging, extruding)
4.    Powder processing (e.g., pressing, sintering)
5.    Material removal processes (e.g., machining)
IV. Performance 16%
A.    Material testing 8%
1.    Mechanical testing (e.g., hardness, tensile, impact)
2.    Mechanical testing (e.g., fatigue, fracture, toughness)
3.    Nondestructive testing (NDT) (e.g., radiography, ultrasonic, penetrant)
4.    Chemical analysis techniques (e.g., OES, EDS)
5.    Metallography (microstructure/macrostructure)
6.    Electron microscopy
7.    X-ray diffraction application/analysis
8.    Environmental test methods (e.g., corrosion testing)
B.    Material degradation 7%
1.    Corrosion and wear mechanisms (e.g., crevice, galvanic, pitting)
2.    High-temperature oxidation
3.    Embrittlement (e.g., hydrogen, DBTT)
C.    Waste process control and environmental impact 1%
1. Recycling and alternative materials to reduce and manage hazardous waste (e.g., Cr, Cd)

 

Find Study Materials for the Exam Here