VIII
RULES FOR CONSTRUCTION
OF PRESSURE VESSELS

Division 2

Alternative Rules

ASME Boiler and Pressure Vessel Committee
on Pressure Vessels
This international code or standard was developed under procedures accredited as meeting the criteria for American National Standards and it is an American National Standard. The Standards Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed code or standard was made available for public review and comment that provides an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large.

ASME does not "approve," "rate," or "endorse" any item, construction, proprietary device, or activity.

ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent, nor assume any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard.

ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures and policies, which precludes the issuance of interpretations by individuals.

The endnotes in this document (if any) are part of this American National Standard.

No part of this document may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Library of Congress Catalog Card Number: 56-3934
Printed in the United States of America

The American Society of Mechanical Engineers
Two Park Avenue, New York, NY 10016-5990

Copyright © 2013 by
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
All rights reserved
TABLE OF CONTENTS

List of Sections .. xvi
Foreword .. xviii
Statement of Policy on the Use of ASME Marking to Identify Manufactured Items xx
Submittal of Technical Inquiries to the Boiler and Pressure Vessel Standards Committees xxi
Personnel .. xxiii
Summary of Changes .. xxxviii
List of Changes in Record Number Order .. xlvi
Cross-Referencing and Stylistic Changes in the Boiler and Pressure Vessel Code 1

Part 1 General Requirements .. 1
1.1 General .. 1
1.2 Scope .. 1
1.3 Standards Referenced by This Division 4
1.4 Units of Measurement .. 4
1.5 Tolerances .. 5
1.6 Technical Inquiries .. 5
1.7 Tables .. 5

Annex 1-A ... 7
Annex 1-B Definitions ... 8
Annex 1-C Guidance For The Use Of U.S. Customary And SI Units In The ASME Boiler And Pressure Vessel Codes ... 10

Part 2 Responsibilities and Duties 16
2.1 General .. 16
2.2 User Responsibilities .. 16
2.3 Manufacturer’s Responsibilities 18
2.4 The Inspector ... 20

Annex 2-B Guide For Certifying A Manufacturer’s Design Report ... 23
Annex 2-C Report Forms and Maintenance of Records ... 25
Annex 2-D Guide For Preparing Manufacturer’s Data Reports ... 27
Annex 2-E Quality Control System ... 37
Annex 2-F Contents and Method of Stamping .. 40
Annex 2-G Obtaining And Using Certification Mark Stamps ... 44
Annex 2-I Establishing Governing Code Editions and Cases for Pressure Vessels and Parts 49

Part 3 Materials Requirements ... 50
3.1 General Requirements ... 50
3.2 Materials Permitted For Construction of Vessel Parts .. 50
3.3 Supplemental Requirements for Ferrous Materials .. 57
3.4 Supplemental Requirements for Cr–Mo Steels .. 58
3.5 Supplemental Requirements for Q&T Steels with Enhanced Tensile Properties 59
FIGURES
2-F.1 Form of Stamping ... 43
2-H.1 Sample Certificate of Authorization .. 48
3.1 Cr-Mo Heat Treatment Criteria ... 90
3.2 Typical Locations for Tensile Specimens 91
3.3 Charpy V-Notch Impact Test Requirements for Full-Size Specimens for Carbon and Low Alloy Steels
 As a Function of the Minimum Specified Yield Strength – Parts Not Subject to PWHT 91
3.3M Charpy V-Notch Impact Test Requirements for Full-Size Specimens for Carbon and Low Alloy Steels
 As a Function of the Minimum Specified Yield Strength – Parts Subject to PWHT 92
3.4 Charpy V-Notch Impact Test Requirements for Full-Size Specimens for Carbon and Low Alloy Steels
 As a Function of the Minimum Specified Yield Strength – Parts Subject to PWHT 93
3.4M Charpy V-Notch Impact Test Requirements for Full-Size Specimens for Carbon and Low Alloy Steels
 As a Function of the Minimum Specified Yield Strength – Parts Subject to PWHT 94
3.5 Illustration of Lateral Expansion in a Broken Charpy V-Notch Specimen 95
3.6 Lateral Expansion Requirements ... 96
3.6M Lateral Expansion Requirements ... 96
3.7 Impact Test Exemption Curves – Parts Not Subject to PWHT 97
3.7M Impact Test Exemption Curves – Parts Not Subject to PWHT 98
3.8 Impact Test Exemption Curves - Parts Subject to PWHT and Non-welded Parts 99
3.8M Impact Test Exemption Curves - Parts Subject to PWHT and Non-welded Parts 100
3.9 Typical Vessel Details Illustrating The Governing Thickness 102
3.10 Typical Vessel Details Illustrating the Governing Thickness 103
3.11 Typical Vessel Details Illustrating the Governing Thickness 104
3.12 Reduction in the MDMT without Impact Testing – Parts Not Subject to PWHT 105
3.12M Reduction in the MDMT without Impact Testing – Parts Not Subject to PWHT 106
3.13 Reduction in the MDMT without Impact Testing - Parts Subject to PWHT and Non-welded Parts 107
3.13M Reduction in the MDMT without Impact Testing - Parts Subject to PWHT and Non-welded Parts for
 Figures 3.12, 3.12M, 3.13, and 3.13M .. 108
3.14 Orientation and Location of Transverse Charpy V-Notch Specimens 109
3.15 Weld Metal Delta Ferrite Content ... 110
4.2.1 Weld Joint Locations Typical Of categories A, B, C, D, and E 183
4.2.2 Some Bracket, Lug and Stiffener Attachment Weld Details 183
4.2.3 Some Acceptable Methods of Attaching Stiffening Rings 185
4.2.4 Some Acceptable Skirt Weld Details ... 186
4.3.1 Conical Shell ... 208
4.3.2 Offset Transition Detail ... 208
4.3.3 Torispherical Head of Uniform Thickness 209
4.3.4 Torispherical Head of Different Thickness of Dome and Knuckle 209
4.3.5 Ellipsoidal Head ... 209
4.3.6 Local Thin Band in a Cylindrical Shell 210
4.3.7 Shells Subjected to Supplemental Loadings 211
4.3.8 Conical Transition Details .. 212
4.12.14 Multi-Diameter Holes .. 361
4.12.15 Rectangular Vessels With Multiple Compartments 362
4.13.1 Some Acceptable Layered Shell Types .. 369
4.13.2 Some Acceptable Layered Head Types .. 370
4.13.3 Transitions of Layered Shell Sections .. 371
4.13.4 Some Acceptable Welded Joints of Layered-To-Layered and Layered-To-Solid Sections 372
4.13.5 Some Acceptable Solid Head Attachments to Layered Shell Sections 373
4.13.6 Some Acceptable Flat Heads and Tubesheets With Hubs Joining Layered Shell Sections 375
4.13.7 Some Acceptable Flanges for Layered Shells 376
4.13.8 Some Acceptable Layered Head Attachments to Layered Shells 377
4.13.9 Some Acceptable Nozzle Attachments to Layered Shell Sections 378
4.13.10 Some Acceptable Supports for Layered Vessels 380
4.13.11 Gap Between Vessel Layers .. 381
4.14.1 LTA Blend Radius Requirements ... 381
4.15.1 Horizontal Vessel on Saddle Supports ... 391
4.15.2 Cylindrical Shell Without Stiffening Rings ... 392
4.15.3 Cylindrical Shell With Stiffening Rings in the Plane of the Saddle 393
4.15.4 Cylindrical Shell With Stiffening Rings on Both Sides of the Saddle 394
4.15.5 Locations of Maximum Longitudinal Normal Stress and Shear Stress in the Cylinder 395
4.15.6 Locations of Maximum Circumferential Normal Stresses in the Cylinder 396
4.15.7 Skirt Attachment Location on Vertical Vessels 397
4.15.8 A Typical Hot-Box Arrangement for Skirt Supported Vertical Vessels 398
4.16.1 Integral Type Flanges ... 415
4.16.2 Integral Type Flanges with a Hub .. 416
4.16.3 Integral Type Flanges With Nut Stops - Diameter Less Than or Equal to 450 mm (18 in.) 417
4.16.4 Integral Type Flanges With Nut Stops - Diameter Greater Than 450 mm (18 in.) 418
4.16.5 Loose Type Flanges ... 419
4.16.6 Loose Type Lap Joint Type Flanges ... 420
4.16.7 Reverse Flanges ... 421
4.16.8 Location of Gasket Reaction Load Diameter .. 422
4.17.1 Typical Hub and Clamp Configuration ... 430
4.17.2 Typical Clamp Lugs Configurations ... 431
4.18.1 Terminology of Heat Exchanger Components 472
4.18.2 Tubesheet Geometry ... 473
4.18.3 Typical Untubed Lane Configurations ... 474
4.18.4 U-Tube Tubesheet Configurations .. 475
4.18.5 Fixed Tubesheet Configurations ... 476
4.18.6 Z_d, Z_v, Z_w, and Z_m Versus X_a .. 477
4.18.7 F_m Versus $X_a (0.0 \leq Q_3 \leq 0.8)$.. 478
4.18.8 F_m Versus $X_a (-0.8 \leq Q_3 \leq 0.0)$... 479
4.18.9 Shell With Increased Thickness Adjacent to the Tubesheets 480
4.18.10 Floating Tubesheet Heat Exchangers ... 481
4.18.11 Stationary Tubesheet Configurations ... 482
4.18.12 Floating Tubesheet Configurations ... 483
4.18.13 Some Acceptable Types of Tube-To-Tubesheet Strength Welds 484
4.18.14 Tube Layout Perimeter ... 485
4.18.15 Integral Channels ... 486
4.18.16 Some Representative Configurations Describing the Minimum Required Thickness of the Tubesheet Flanged Extension, h_f ... 486
4.19.1-1 Typical Bellows Expansion Joints .. 505
4.19.2 Possible Convolution Profile in Neutral Position 507
4.19.3 Dimensions to Determine I_{XY} ... 507
4.19.4 Bellows Subject to an Axial Displacement x 508
4.19.5 Bellows Subject to a Lateral Displacement y 508
3.1 Material Specifications .. 81
3.2 Composition Requirements For 2.25Cr-1Mo-0.25V Weld Metal .. 81
3.3 Toughness Requirements For 2.25Cr-1Mo Materials .. 82
3.4 Low Alloy Bolting Materials For Use With Flanges Designed To Part 4, Paragraph 4.16 82
3.5 High Alloy Bolting Materials For Use With Flanges Designed To Part 4, Paragraph 4.16 83
3.6 Aluminum Alloy, Copper, and Copper Alloy Bolting Materials For Use With Flanges Designed To Part 4, Paragraph 4.16 ... 83
3.7 Nickel and Nickel Alloy Bolting Materials For Use With Flanges Designed To Part 4, Paragraph 4.16 .. 84
3.8 Bolting Materials For Use With Flanges Designed To Part 5 .. 84
3.9 Maximum Severity Levels For Castings With A Thickness Of Less Than 50 mm (2 in.) 84
3.10 Maximum Severity Levels For Castings With A Thickness Of 50 mm to 305 mm (2 in. to 12 in.) .. 85
3.11 Charpy Impact Test Temperature Reduction Below The Minimum Design Metal Temperature .. 85
3.12 Charpy V-Notch Impact Test Requirements for Full-Size Specimens for Carbon and Low Alloy Steels As a Function of the Minimum Specified Yield Strength – Parts Not Subject to PWHT (See Figures 3.3 and 3.3M) .. 85
3.13 Charpy V-Notch Impact Test Requirements for Full-Size Specimens for Carbon and Low Alloy Steels As a Function of the Minimum Specified Yield Strength – Parts Subject to PWHT (See Figures 3.4 and 3.4M) .. 86
3.14 Impact Test Exemption Curves – Parts Not Subject to PWHT (See Figures 3.7 and 3.7M) 87
3.15 Impact Test Exemption Curves – Parts Subject to PWHT and Non-welded Parts (see Figures 3.8 and 3.8M) .. 87
3.16 Reduction in the MDMT (T_M) without Impact Testing – Parts Not Subject to PWHT (see Figures 3.12 and 3.12M) .. 88
3.17 Reduction in the MDMT (T) without Impact Testing - Parts Subject to PWHT and Non-welded
Parts (see Figures 3.13 and 3.13M) ... 89
3-A.1 Carbon Steel and Low Alloy Materials .. 112
3-A.2 Quenched and Tempered High Strength Steels ... 117
3-A.3 High Alloy Steel ... 118
3-A.4 Aluminum Alloys .. 123
3-A.5 Copper Alloys ... 124
3-A.6 Nickel and Nickel Alloys ... 125
3-A.7 Titanium and Titanium Alloys ... 127
3-A.8 Ferrous Bolting Materials for Design in Accordance With Part 4 128
3-A.9 Aluminum Alloy and Copper Alloy Bolting Materials for Design in Accordance With Part 4 130
3-A.10 Nickel and Nickel Alloy Bolting Materials Bolting Materials for Design in Accordance With Part 4 130
3-A.11 Bolting Materials for Design in Accordance With Part 5 131
3-D.1 Stress-Strain Curve Parameters ... 138
3-D.2 Cyclic Stress-Strain Curve Data ... 138
3-D.2M Cyclic Stress-Strain Curve Data ... 140
3-F.1 Coefficients for Fatigue Curve 110.1 – Carbon, Low Alloy, Series 4XX, High Alloy Steels, And High
Tensile Strength Steels For Temperatures not Exceeding 371°C (700°F) –
σ_{YS} ≤ 552 MPa (80 ksi) ... 145
3-F.2 Coefficients for Fatigue Curve 110.1 – Carbon, Low Alloy, Series 4XX, High Alloy Steels, And High
Tensile Strength Steels For Temperatures not Exceeding 371°C (700°F) –
σ_{YS} = 793 – 892 MPa (115 – 130 ksi) ... 145
3-F.3 Coefficients For Fatigue Curve 110.2.1 – Series 3XX High Alloy Steels, Nickel-Chromium-Iron Alloy,
Nickel-Iron-Chromium Alloy, And Nickel-Copper Alloy For Temperatures Not Exceeding 427°C
(800°F) Where σ_y > 195 MPa (28.2 ksi) .. 146
3-F.4 Coefficients for Fatigue Curve 110.3 – Wrought 70 Copper-Nickel For Temperatures Not Exceeding
371°C (700°F) – σ_{YS} ≤ 134 MPa (18 ksi) .. 146
3-F.5 Coefficients for Fatigue Curve 110.3 – Wrought 70 Copper-Nickel For Temperatures Not Exceeding
370°C (700°F) – σ_{YS} = 207 MPa (30 ksi) .. 147
3-F.6 Coefficients for Fatigue Curve 110.3 – Wrought 70 Copper-Nickel For Temperatures Not Exceeding
371°C (700°F) – σ_{YS} = 310 MPa (45 ksi) .. 147
3-F.7 Coefficients for Fatigue Curve 110.4 – Nickel-Chromium-Molybdenum-Iron, Alloys X, G, C-4, And
C-276 For Temperatures Not Exceeding 427°C (800°F) 148
3-F.8 Coefficients for Fatigue Curve 120.1 – High Strength Bolting For Temperatures Not Exceeding
371°C (700°F) .. 148
3-F.9 Data for Fatigue Curves in Tables 3-F.1 Through 3-F.8 149
3-F.10 Coefficients for the Welded Joint Fatigue Curves .. 149
3-F.10M Coefficients for the Welded Joint Fatigue Curves 150
4.1.1 Design Loads ... 156
4.1.2 Design Load Combinations .. 157
4.2.1 Definition Of Weld Categories .. 163
4.2.2 Definition Of Weld Joint Types ... 164
4.2.3 Definition Of Material Types For Welding And Fabrication Requirements ... 164
4.2.4 Some Acceptable Weld Joints For Shell Seams ... 165
4.2.5 Some Acceptable Weld Joints For Formed Heads 167
4.2.6 Some Acceptable Weld Joints For Unstayed Flat Heads, Tubesheets Without A Bolting Flange, And
Side Plates of Rectangular Pressure Vessels .. 169
4.2.7 Some Acceptable Weld Joints With Butt Weld Hubs 170
4.2.8 Some Acceptable Weld Joints For Attachment Of Tubesheets With A Bolting Flange 171
4.2.9 Some Acceptable Weld Joints For Flange Attachments 172
4.2.10 Some Acceptable Full Penetration Welded Nozzle Attachments Not Readily Radiographable 175
4.2.11 Some Acceptable Pad Welded Nozzle Attachments And Other Connections To Shells ... 177
4.2.12 Some Acceptable Fitting Type Welded Nozzle Attachments And Other Connections To Shells 179
4.2.13 Some Acceptable Welded Nozzle Attachments That Are Readily Radiographable ... 180
4.2.14 Some Acceptable Partial Penetration Nozzle Attachments 182
5-E.18 Stress Factor K_x
5-E.9 Equations For Determining Stress Components Based On The Results From An Equivalent Plate Analysis For An Equilateral Rectangular Hole Pattern ... 618
5-E.10 Orthotropic Effective Elasticity Matrix For A Perforated Plate With An Equilateral Triangular Hole Pattern ... 618
5-E.11 Stress Factor K_y Coefficients – Triangular Hole Pattern ... 619
5-E.12 Stress Factor K_x Coefficients – Triangular Hole Pattern ... 621
5-E.13 Stress Factor K_{xy} Coefficients – Triangular Hole Pattern .. 622
5-E.14 Stress Factor K_{xz} Coefficients – Triangular Hole Pattern .. 624
5-E.15 Stress Factor K_{yz} Coefficients – Triangular Hole Pattern .. 625
5-E.16 Stress Factors K_x And K_y Coefficients – Rectangular Hole Pattern 627
5-E.17 Stress Factor K_{xy} – Square Hole Pattern ... 628
5-E.18 Stress Factor K_{xz} And K_{yz} – Square Hole Pattern .. 629
5-E.19 Boundary Conditions for the Numerical Analysis (see Figure 5-E.3) 631
6.1 Equations For Calculating Forming Strains .. 672
6.2 Equations For Determining Forming Strains (see Figure 5-E.3) ... 672
6.2.A Post Cold-Forming Strain Limits and Heat-Treatment Requirements for P-No. 15E Materials .. 672
6.2.B Post Fabrication Strain Limits And Required Heat Treatment For High Alloy Materials 673
6.3 Post Fabrication Strain Limits And Required Heat Treatment For Nonferrous Materials 674
6.4 Maximum Allowable Offset In Welded Joints ... 674
6.5 Acceptable Welding Process And Limitations ... 674
6.6 Maximum Reinforcement For Welded Joints ... 675
6.7 Minimum Preheat Temperatures for Welding ... 675
6.8 Requirements For Post Weld Heat Treatment (PWHT) Of Pressure Parts And Attachments For Material: P-No. 1, Group 1, 2, 3 ... 676
6.9 Requirements For Post Weld Heat Treatment (PWHT) Of Pressure Parts And Attachments For Material: P-No. 3, Group 1, 2, 3 .. 677
6.10 Requirements for Post Weld Heat Treatment (PWHT) of Pressure Parts and Attachments For Materials: P-No. 4, Group 1, 2 .. 678
6.11 Requirements For Post Weld Heat Treatment (PWHT) Of Pressure Parts And Attachments For Materials: P-No. 5A, P-No. 5B Group 1, and P-No. 5C Group 1 .. 679
6.11.A Requirements For Post Weld Heat Treatment (PWHT) Of Pressure Parts And Attachments For Materials: P-No. 15E Group 1 .. 680
6.12 Requirements For Post Weld Heat Treatment (PWHT) Of Pressure Parts And Attachments For Materials: P-No. 6, Group 1, 2, 3 .. 681
6.13 Requirements For Post Weld Heat Treatment (PWHT) Of Pressure Parts And Attachments For Materials: P-No. 7, Group 1, 2 and P-No. 8 .. 681
6.14 Requirements For Post Weld Heat Treatment (PWHT) Of Pressure Parts And Attachments For Materials: P-No. 9A, Group 1 and P-No. 9B, Group 1 .. 682
6.15 Requirements For Post Weld Heat Treatment (PWHT) Of Pressure Parts And Attachments For Materials: P-No. 10A, Group 1; P-No. 10B, Group 2; P-No. 10C, Group 1, P-No. 10E, Group 1; P-No. 10F, Group 6; P-No. 10G, Group 1; P-No. 10H, Group 1; P-No. 10I, Group 1; and P-No. 10K, Group 1 .. 684
6.16 Alternative Postweld Heat Treatment Requirements (Applicable Only When Permitted by Tables 6.8 through 6.15) .. 687
6.17 Postweld Heat Treatment Requirements For Quenched And Tempered Materials In Part 3, Table 3-A.2 ... 687
6.18 Quench And Tempered Steels Conditionally Exempt From Production Impact Tests 688
6.19 High Nickel Alloy Filler For Quenched And Tempered Steels ... 689
6.20 Mandrel Radius for Guided Bend Tests for Forged Fabrication .. 689
6.21 U-Shaped Unreinforced and Reinforced Bellows Manufacturing Tolerances 689
6.2.A Post Cold-Forming Strain Limits and Heat-Treatment Requirements for P-No. 15E Materials .. 672
6.2.B Post Fabrication Strain Limits And Required Heat Treatment For High Alloy Materials 673
6.3 Post Fabrication Strain Limits And Required Heat Treatment For Nonferrous Materials 674
6.4 Maximum Allowable Offset In Welded Joints ... 674
6.5 Acceptable Welding Process And Limitations ... 674
6.6 Maximum Reinforcement For Welded Joints ... 675
6.7 Minimum Preheat Temperatures for Welding ... 675
6.8 Requirements For Post Weld Heat Treatment (PWHT) Of Pressure Parts And Attachments For Material: P-No. 1, Group 1, 2, 3 ... 676
6.9 Requirements For Post Weld Heat Treatment (PWHT) Of Pressure Parts And Attachments For Material: P-No. 3, Group 1, 2, 3 .. 677
6.10 Requirements for Post Weld Heat Treatment (PWHT) of Pressure Parts and Attachments For Materials: P-No. 4, Group 1, 2 .. 678
6.11 Requirements For Post Weld Heat Treatment (PWHT) Of Pressure Parts And Attachments For Materials: P-No. 5A, P-No. 5B Group 1, and P-No. 5C Group 1 .. 679
6.11.A Requirements For Post Weld Heat Treatment (PWHT) Of Pressure Parts And Attachments For Materials: P-No. 15E Group 1 .. 680
6.12 Requirements For Post Weld Heat Treatment (PWHT) Of Pressure Parts And Attachments For Materials: P-No. 6, Group 1, 2, 3 .. 681
6.13 Requirements For Post Weld Heat Treatment (PWHT) Of Pressure Parts And Attachments For Materials: P-No. 7, Group 1, 2 and P-No. 8 .. 681
6.14 Requirements For Post Weld Heat Treatment (PWHT) Of Pressure Parts And Attachments For Materials: P-No. 9A, Group 1 and P-No. 9B, Group 1 .. 682
6.15 Requirements For Post Weld Heat Treatment (PWHT) Of Pressure Parts And Attachments For Materials: P-No. 10A, Group 1; P-No. 10B, Group 2; P-No. 10C, Group 1, P-No. 10E, Group 1; P-No. 10F, Group 6; P-No. 10G, Group 1; P-No. 10H, Group 1; P-No. 10I, Group 1; and P-No. 10K, Group 1 .. 684
6.16 Alternative Postweld Heat Treatment Requirements (Applicable Only When Permitted by Tables 6.8 through 6.15) .. 687
6.17 Postweld Heat Treatment Requirements For Quenched And Tempered Materials In Part 3,
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>Visual Examination Acceptance Criteria</td>
<td>724</td>
</tr>
<tr>
<td>7.7</td>
<td>Radiographic Acceptance Standards For Rounded Indications (Examples Only)</td>
<td>726</td>
</tr>
<tr>
<td>7.8</td>
<td>Flaw Acceptance Criteria for Welds Between Thicknesses of 6 mm ((\frac{1}{4}) in.) and < 13 mm ((\frac{1}{2}) in.)</td>
<td>726</td>
</tr>
<tr>
<td>7.9</td>
<td>Flaw Acceptance Criteria for Welds With A Thickness Between 13 mm ((\frac{1}{2}) in.) And Less Than 25 mm (1 in.)</td>
<td>727</td>
</tr>
<tr>
<td>7.10</td>
<td>Flaw Acceptance Criteria for Welds With Thickness Between 25 mm (1 in.) And Less Than or Equal to 300 mm (12 in.)</td>
<td>727</td>
</tr>
<tr>
<td>7.11</td>
<td>Flaw Acceptance Criteria for Welds With A Thickness Greater Than 300 mm (12 in.)</td>
<td>728</td>
</tr>
<tr>
<td>7-A.1</td>
<td>Inspection And Examination Activities and Responsibilities/Duties</td>
<td>746</td>
</tr>
</tbody>
</table>

FORMS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.19.1</td>
<td>Metric Form Specification Sheet For ASME Section VIII, Division 2 Bellows Expansion Joints, Metric Units</td>
<td>516</td>
</tr>
<tr>
<td>4.19.2</td>
<td>U.S. Customary Form Specification Sheet For ASME Section VIII, Division 2 Bellows Expansion Joints, U.S. Customary Units</td>
<td>517</td>
</tr>
</tbody>
</table>
LIST OF SECTIONS

I Rules for Construction of Power Boilers

II Materials
- Part A — Ferrous Material Specifications
- Part B — Nonferrous Material Specifications
- Part C — Specifications for Welding Rods, Electrodes, and Filler Metals
- Part D — Properties (Customary)
- Part D — Properties (Metric)

III Rules for Construction of Nuclear Facility Components
- Subsection NCA — General Requirements for Division 1 and Division 2
- Appendices
- Division 1
 - Subsection NB — Class 1 Components
 - Subsection NC — Class 2 Components
 - Subsection ND — Class 3 Components
 - Subsection NE — Class MC Components
 - Subsection NF — Supports
 - Subsection NG — Core Support Structures
 - Subsection NH — Class 1 Components in Elevated Temperature Service
- Division 2 — Code for Concrete Containments
- Division 3 — Containments for Transportation and Storage of Spent Nuclear Fuel and High Level Radioactive Material and Waste
- Division 5 — High Temperature Reactors

IV Rules for Construction of Heating Boilers

V Nondestructive Examination

VI Recommended Rules for the Care and Operation of Heating Boilers

VII Recommended Guidelines for the Care of Power Boilers

VIII Rules for Construction of Pressure Vessels
- Division 1
- Division 2 — Alternative Rules
- Division 3 — Alternative Rules for Construction of High Pressure Vessels

IX Welding, Brazing, and Fusing Qualifications

X Fiber-Reinforced Plastic Pressure Vessels

XI Rules for Inservice Inspection of Nuclear Power Plant Components

XII Rules for Construction and Continued Service of Transport Tanks
INTERPRETATIONS

ASME issues written replies to inquiries concerning interpretation of technical aspects of the Code. Interpretations of the Code are posted in January and July at http://cstools.asme.org/interpretations.cfm. Any Interpretations issued during the previous two calendar years are included with the publication of the applicable Section of the Code. Interpretations of Section III, Divisions 1 and 2 and Section III Appendices are included with Subsection NCA.

CODE CASES

The Boiler and Pressure Vessel Code committees meet regularly to consider proposed additions and revisions to the Code and to formulate Cases to clarify the intent of existing requirements or provide, when the need is urgent, rules for materials or constructions not covered by existing Code rules. Those Cases that have been adopted will appear in the appropriate 2013 Code Cases book: “Boilers and Pressure Vessels” or “Nuclear Components.” Supplements will be sent automatically to the purchasers of the Code Cases books up to the publication of the 2015 Code.
FOREWORD

(This Foreword is provided as an aid to the user and is not part of the rules of this Code.)

In 1911, The American Society of Mechanical Engineers established the Boiler and Pressure Vessel Committee to formulate standard rules for the construction of steam boilers and other pressure vessels. In 2009, the Boiler and Pressure Vessel Committee was superseded by the following committees:

(a) Committee on Power Boilers (I)
(b) Committee on Materials (II)
(c) Committee on Construction of Nuclear Facility Components (III)
(d) Committee on Heating Boilers (IV)
(e) Committee on Nondestructive Examination (V)
(f) Committee on Pressure Vessels (VIII)
(g) Committee on Welding, Brazing, and Fusing (IX)
(h) Committee on Fiber-Reinforced Plastic Pressure Vessels (X)
(i) Committee on Nuclear Inservice Inspection (XI)
(j) Committee on Transport Tanks (XII)

Where reference is made to “the Committee” in this Foreword, each of these committees is included individually and collectively.

The Committee’s function is to establish rules of safety relating only to pressure integrity, which govern the construction* of boilers, pressure vessels, transport tanks, and nuclear components, and the inservice inspection of nuclear components and transport tanks. The Committee also interprets these rules when questions arise regarding their intent. This Code does not address other safety issues relating to the construction of boilers, pressure vessels, transport tanks, or nuclear components, or the inservice inspection of nuclear components or transport tanks. Users of the Code should refer to the pertinent codes, standards, laws, regulations, or other relevant documents for safety issues other than those relating to pressure integrity. Except for Sections XI and XII, and with a few other exceptions, the rules do not, of practical necessity, reflect the likelihood and consequences of deterioration in service related to specific service fluids or external operating environments. In formulating the rules, the Committee considers the needs of users, manufacturers, and inspectors of pressure vessels. The objective of the rules is to afford reasonably certain protection of life and property, and to provide a margin for deterioration in service to give a reasonably long, safe period of usefulness. Advancements in design and materials and evidence of experience have been recognized.

This Code contains mandatory requirements, specific prohibitions, and nonmandatory guidance for construction activities and inservice inspection and testing activities. The Code does not address all aspects of these activities and those aspects that are not specifically addressed should not be considered prohibited. The Code is not a handbook and cannot replace education, experience, and the use of engineering judgment. The phrase engineering judgement refers to technical judgments made by knowledgeable engineers experienced in the application of the Code. Engineering judgments must be consistent with Code philosophy, and such judgments must never be used to overrule mandatory requirements or specific prohibitions of the Code.

The Committee recognizes that tools and techniques used for design and analysis change as technology progresses and expects engineers to use good judgment in the application of these tools. The designer is responsible for complying with Code rules and demonstrating compliance with Code equations when such equations are mandatory. The Code neither requires nor prohibits the use of computers for the design or analysis of components constructed to the requirements of the Code. However, designers and engineers using computer programs for design or analysis are cautioned that they are responsible for all technical assumptions inherent in the programs they use and the application of these programs to their design.

* Construction, as used in this Foreword, is an all-inclusive term comprising materials, design, fabrication, examination, inspection, testing, certification, and pressure relief.
The rules established by the Committee are not to be interpreted as approving, recommending, or endorsing any proprietary or specific design, or as limiting in any way the manufacturer’s freedom to choose any method of design or any form of construction that conforms to the Code rules.

The Committee meets regularly to consider revisions of the rules, new rules as dictated by technological development, Code Cases, and requests for interpretations. Only the Committee has the authority to provide official interpretations of this Code. Requests for revisions, new rules, Code Cases, or interpretations shall be addressed to the Secretary in writing and shall give full particulars in order to receive consideration and action (see Submittal of Technical Inquiries to the Boiler and Pressure Vessel Standards Committees). Proposed revisions to the Code resulting from inquiries will be presented to the Committee for appropriate action. The action of the Committee becomes effective only after confirmation by ballot of the Committee and approval by ASME. Proposed revisions to the Code approved by the Committee are submitted to the American National Standards Institute (ANSI) and published at http://cstools.asme.org/csconnect/public/index.cfm?PublicReview=Revisions to invite comments from all interested persons. After public review and final approval by ASME, revisions are published at regular intervals in Editions of the Code.

The Committee does not rule on whether a component shall or shall not be constructed to the provisions of the Code. The scope of each Section has been established to identify the components and parameters considered by the Committee in formulating the Code rules.

Questions or issues regarding compliance of a specific component with the Code rules are to be directed to the ASME Certificate Holder (Manufacturer). Inquiries concerning the interpretation of the Code are to be directed to the Committee. ASME is to be notified should questions arise concerning improper use of an ASME Certification Mark.

When required by context in this Section, the singular shall be interpreted as the plural, and vice versa, and the feminine, masculine, or neuter gender shall be treated as such other gender as appropriate.
STATEMENT OF POLICY ON THE USE OF THE CERTIFICATION MARK AND CODE AUTHORIZATION IN ADVERTISING

ASME has established procedures to authorize qualified organizations to perform various activities in accordance with the requirements of the ASME Boiler and Pressure Vessel Code. It is the aim of the Society to provide recognition of organizations so authorized. An organization holding authorization to perform various activities in accordance with the requirements of the Code may state this capability in its advertising literature.

Organizations that are authorized to use the Certification Mark for marking items or constructions that have been constructed and inspected in compliance with the ASME Boiler and Pressure Vessel Code are issued Certificates of Authorization. It is the aim of the Society to maintain the standing of the Certification Mark for the benefit of the users, the enforcement jurisdictions, and the holders of the Certification Mark who comply with all requirements.

Based on these objectives, the following policy has been established on the usage in advertising of facsimiles of the Certification Mark, Certificates of Authorization, and reference to Code construction. The American Society of Mechanical Engineers does not “approve,” “certify,” “rate,” or “endorse” any item, construction, or activity and there shall be no statements or implications that might so indicate. An organization holding the Certification Mark and/or a Certificate of Authorization may state in advertising literature that items, constructions, or activities “are built (produced or performed) or activities conducted in accordance with the requirements of the ASME Boiler and Pressure Vessel Code,” or “meet the requirements of the ASME Boiler and Pressure Vessel Code.” An ASME corporate logo shall not be used by any organization other than ASME.

The Certification Mark shall be used only for stamping and nameplates as specifically provided in the Code. However, facsimiles may be used for the purpose of fostering the use of such construction. Such usage may be by an association or a society, or by a holder of the Certification Mark who may also use the facsimile in advertising to show that clearly specified items will carry the Certification Mark. General usage is permitted only when all of a manufacturer’s items are constructed under the rules.

STATEMENT OF POLICY ON THE USE OF ASME MARKING TO IDENTIFY MANUFACTURED ITEMS

The ASME Boiler and Pressure Vessel Code provides rules for the construction of boilers, pressure vessels, and nuclear components. This includes requirements for materials, design, fabrication, examination, inspection, and stamping. Items constructed in accordance with all of the applicable rules of the Code are identified with the official Certification Mark described in the governing Section of the Code.

Markings such as “ASME,” “ASME Standard,” or any other marking including “ASME” or the Certification Mark shall not be used on any item that is not constructed in accordance with all of the applicable requirements of the Code.

Items shall not be described on ASME Data Report Forms nor on similar forms referring to ASME that tend to imply that all Code requirements have been met when, in fact, they have not been. Data Report Forms covering items not fully complying with ASME requirements should not refer to ASME or they should clearly identify all exceptions to the ASME requirements.
1 INTRODUCTION

(a) The following information provides guidance to Code users for submitting technical inquiries to the committees. See Guideline on the Approval of New Materials Under the ASME Boiler and Pressure Vessel Code in Section II, Parts C and D for additional requirements for requests involving adding new materials to the Code. Technical inquiries include requests for revisions or additions to the Code rules, requests for Code Cases, and requests for Code Interpretations, as described below.

(1) Code Revisions. Code revisions are considered to accommodate technological developments, address administrative requirements, incorporate Code Cases, or to clarify Code intent.

(2) Code Cases. Code Cases represent alternatives or additions to existing Code rules. Code Cases are written as a question and reply, and are usually intended to be incorporated into the Code at a later date. When used, Code Cases prescribe mandatory requirements in the same sense as the text of the Code. However, users are cautioned that not all jurisdictions or owners automatically accept Code Cases. The most common applications for Code Cases are:

(-a) to permit early implementation of an approved Code revision based on an urgent need
(-b) to permit the use of a new material for Code construction
(-c) to gain experience with new materials or alternative rules prior to incorporation directly into the Code

(3) Code Interpretations. Code Interpretations provide clarification of the meaning of existing rules in the Code, and are also presented in question and reply format. Interpretations do not introduce new requirements. In cases where existing Code text does not fully convey the meaning that was intended, and revision of the rules is required to support an interpretation, an Intent Interpretation will be issued and the Code will be revised.

(b) The Code rules, Code Cases, and Code Interpretations established by the committees are not to be considered as approving, recommending, certifying, or endorsing any proprietary or specific design, or as limiting in any way the freedom of manufacturers, constructors, or owners to choose any method of design or any form of construction that conforms to the Code rules.

(c) Inquiries that do not comply with these provisions or that do not provide sufficient information for a committee’s full understanding may result in the request being returned to the inquirer with no action.

2 INQUIRY FORMAT

Submittals to a committee shall include:

(a) Purpose. Specify one of the following:

(1) revision of present Code rules
(2) new or additional Code rules
(3) Code Case
(4) Code Interpretation

(b) Background. Provide the information needed for the committee’s understanding of the inquiry, being sure to include reference to the applicable Code Section, Division, Edition, Addenda (if applicable), paragraphs, figures, and tables. Preferably, provide a copy of the specific referenced portions of the Code.

(c) Presentations. The inquirer may desire or be asked to attend a meeting of the committee to make a formal presentation or to answer questions from the committee members with regard to the inquiry. Attendance at a committee meeting shall be at the expense of the inquirer. The inquirer’s attendance or lack of attendance at a meeting shall not be a basis for acceptance or rejection of the inquiry by the committee.