DESIGN
OF
WELDED
STRUCTURES

THE JAMES F. LINDO AND WELDING FOUNDATION
CLEVELAND, OHIO
PREFACEx

WELDED STRUCTURAL CONNECTIONS have long been used in the construction of buildings, bridges, and other structures. The first welded buildings were erected in the '20s—the greatest application being in low-level buildings of many types. The American Welding Society first published specifications for welded bridges in 1936. But early progress came slowly.

During that year, 1936, The James F. Lincoln Arc Welding Foundation was created by The Lincoln Electric Company to help advance the progress in welded design and construction. Through its award programs and educational activities, the Foundation provided an exchange of experience and gave impetus to the growing application of welding.

Thus, within the last decade and particularly the past few years, unitized welded design has become widely accepted for high-rise buildings and bridges of nobler proportions in addition to the broad base of more modest structures.

Now, the Foundation publishes this manual for further guidance and challenge to architects, structural engineers, fabricators and contractors who will build the structures of tomorrow . . . and to the educators who will prepare young people for these professions. This material represents an interpretation of the best in accumulated experience of all who have participated in prior Foundation activities. The author has coordinated this with a continuing study of current welding research conducted both in the United States and Europe, and against a background of participation on various code-writing committees. Much of the direct instructional information that resulted has been pretested in over 70 structural seminars attended by over 4000 engineers.

The production of this manual has spanned several years during which constant effort was made to eliminate errors. The author will appreciate having called to his attention any errors that have escaped his attention and invites correspondence on subjects about which the reader may have questions. Neither the author nor the publisher, however, can assume responsibility for the results of designers using values and formulas contained in the manual since so many variables affect every design.

Charles Hetruck
Secretary
The James F. Lincoln Arc Welding Foundation

June 1966
Table of Contents

Part One
Introduction
- Introduction to Welded Construction

Part Two
Load & Stress Analysis
- Properties of Materials
- Properties of Sections
- Built-Up Tension Members
- Analysis of Compression Members
- Deflection by Bending
- Deflection of Curved Beams
- Designing for Impact Loads
- Designing for Fatigue Loads
- Designing for Torsional Loads
- Analysis of Combined Stresses
- Buckling of Plates

Part Three
Column-Related Design
- Analysis of Compression Members
- Design of Compression Members
- Column Beams
- Column Splices
- Bearing-Pin Connections
- Designing Built-Up Columns

Part Four
Girder-Related Design
- Welded Plate Girders for Buildings
- Efficient Plate Girders for Bridges
- Welded Plate Girders with Variable Depth
- Tapered Girders
- Open-Weld webbed beams and Girders
- Open-Weld Extended Beams and Girders
- Open-Weld Extended Beams and Girders
- Construction for Bridges
- Orthotropic Bridge Decks
- Floor Systems for Bridges
- Construction of Plate Girders
- Fabrication of Plate Girders
- Field Welding of Buildings
- Field Welding of Bridges
Part Five
WELDED-CONNECTION DESIGN

- Beam-to-Column Connections 5.1
- Flexible Seat Angles 5.2
- Stiffened Seat Brackets 5.3
- Web Framing Angles 5.4
- Top Connecting Plates for Simple Beams and Wind Bracing 5.5
- Top Connecting Plates for Semi-Rigid Connections 5.6
- Beam-to-Column Continuous Connections 5.7
- Beam-to-Girder Continuous Connections 5.8
- Design of Trusses 5.9
- Connections for Tubular Connections 5.10
- Rigid-Frame Knees (Elastic Design) 5.11
- Welded Connections for Plastic Design 5.12
- Welded Connections for Vierendeel Trusses 5.13

Part Six
MISCELLANEOUS STRUCTURE DESIGN

- Design of Rigid Frames (Elastic Design) 6.1
- Open Web Bar Joists 6.2
- Reinforcing Bars 6.3
- How to Stiffen a Panel 6.4
- Tanks, Bins and Hoppers 6.5
- Design of Hangers and Supports 6.6

Part Seven
JOINT DESIGN AND PRODUCTION

- Selection of Structural Steel for Welded Construction 7.1
- Weldability and Welding Procedure 7.2
- Joint Design 7.3
- Determining Weld Size 7.4
- Estimating Welding Cost 7.5
- Welding on Existing Structures 7.6
- Control of Shrinkage and Distortion 7.7
- Painting & Corrosion of Welded Structures 7.8
- Weld Quality and Inspection 7.9

Part Eight
REFERENCE DESIGN FORMULAS

- Beam Diagrams and Formulas 8.1
- Torsion Member Diagrams and Formulas 8.2